Return to search

Towards the creation of Fock states of atoms

Ultracold atoms have been successfully used to study numerous systems, previously unaccessible, but a precise control over the atom number of the sample still remains a challenge. This dissertation describes our progress towards achieving Fock states of atoms. The first three chapters cover the basic physics necessary to understand the techniques we use in our lab to manipulate atoms. We then summarize our experimental results from an earlier setup where we did two experiments. In the first experiment we compare the transport of cold atoms and a Bose Einstein Condensate (BEC) in a periodic potential. We find a critical potential height beyond which the condensate behavior deviates significantly from that of thermal atoms. In the second experiment we study the effect of periodic temporal kicks by a spatially periodic potential on a BEC in a quasi one dimensional trap. We observe a limit on the energy that the system can absorb from the kicks, which we conclude is due to the finite height of the trap rather than quantum effects. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during tr₀ansport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. The majority of the dissertation discusses our experimental setup designed to produce Fock states. The setup is designed to use the method of laser culling to produce Fock states. We are able to create a BEC and transport it into a glass cell 25 cm away. We tried different innovative methods to reduce vibrations during transport before finally settling to a commercial air bearing translation stage. We create a high confinement one dimensional optical trap using the Hermite Gaussian TEM₀₁ mode of a laser beam. Such a trap gives trapping frequencies comparable to an optical lattice and allows us to create a single one dimensional trap. We creating the TEM₀₁ mode using an appropriate phase object (phase plate) in the path of a TEM₀₀ mode beam. The method for producing the phase plate was very well controlled to obtain a good quality mode. Once the atoms are loaded into this one dimensional trap we can proceed to do laser culling to observe Sub-Poissonian number statistics and eventually create Fock states of few atoms. Finally, we describe a novel method to create a real time tunable optical lattice which would provide us with the ability of spatially resolved single atom detection. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/6553
Date19 October 2009
CreatorsKelkar, Hrishikesh Vidyadhar
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0091 seconds