Return to search

Pénalisation et réduction de la dimension des variables auxiliaires en théorie des sondages

Les enquêtes par sondage sont utiles pour estimer des caractéristiques d'une populationtelles que le total ou la moyenne. Cette thèse s'intéresse à l'étude detechniques permettant de prendre en compte un grand nombre de variables auxiliairespour l'estimation d'un total.Le premier chapitre rappelle quelques définitions et propriétés utiles pour lasuite du manuscrit : l'estimateur de Horvitz-Thompson, qui est présenté commeun estimateur n'utilisant pas l'information auxiliaire ainsi que les techniques decalage qui permettent de modifier les poids de sondage de facon à prendre encompte l'information auxiliaire en restituant exactement dans l'échantillon leurstotaux sur la population.Le deuxième chapitre, qui est une partie d'un article de synthèse accepté pourpublication, présente les méthodes de régression ridge comme un remède possibleau problème de colinéarité des variables auxiliaires, et donc de mauvais conditionnement.Nous étudions les points de vue "model-based" et "model-assisted" dela ridge regression. Cette technique qui fournit de meilleurs résultats en termed'erreur quadratique en comparaison avec les moindres carrés ordinaires peutégalement s'interpréter comme un calage pénalisé. Des simulations permettentd'illustrer l'intérêt de cette technique par compar[a]ison avec l'estimateur de Horvitz-Thompson.Le chapitre trois présente une autre manière de traiter les problèmes de colinéaritévia une réduction de la dimension basée sur les composantes principales. Nousétudions la régression sur composantes principales dans le contexte des sondages.Nous explorons également le calage sur les moments d'ordre deux des composantesprincipales ainsi que le calage partiel et le calage sur les composantes principalesestimées. Une illustration sur des données de l'entreprise Médiamétrie permet deconfirmer l'intérêt des ces techniques basées sur la réduction de la dimension pourl'estimation d'un total en présence d'un grand nombre de variables auxiliaires

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00812880
Date12 October 2012
CreatorsShehzad, Muhammad Ahmed
PublisherUniversité de Bourgogne
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds