Since current prosthetic heart valve replacements are costly, cause medical complications, and lack the ability to regenerate, tissue-engineered heart valves are an attractive alternative. These could provide an unlimited supply of immunological-tolerated biological substitutes, which respond to patients' physiological condition and grow with them. Since collagen is a major extra cellular matrix component of the heart valve, it is ideal material for constructing scaffolds. Collagen sources have been shown to influence the manufacturing of collagen scaffolds, and two commercial sources of collagen were obtained from Sigma Aldrich and Devro PLC for comparison. Consistencies between the collagens were shown in the primary and secondary structures of the collagen, while inconsistencies were shown at the tertiary level, when a higher level of natural crosslinking in the Sigma collagen and longer polymer chains in the Devro collagen were observed. These variations were reduced and the consistency increased by introducing crosslinking via dehydrothermal treatment (DHT). Collagen scaffolds produced via freeze-drying (FD) and critical point-drying with cross-linking via DHT or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide /N-hydroxysuccinimide (EDC/NHS) were investigated. All the scaffolds were compatible with mesenchymal stem cells (MSCs) according to the proliferation of the cells and their ability to produce ECM, without differentiating between osteogenic, chondrogenic or endothelial lineages. The FD EDC/NHS scaffold demonstrated the most suitable physical property of all. This result illustrates that FD EDC/NHS crosslinking is the most suitable scaffold investigated as a start for heart valve tissue engineering. To prepare a scaffold with a controlled local, spatial and temporal delivery of growth factor, a composite scaffold comprising poly (lactic-co-glycolic acid) (PLGA) microspheres was developed. This composite scaffold demonstrated the same compatibility to the MSCs as untreated scaffold. However, the PLGA microspheres showed an increase in the deterioration rate of Young's modulus because of the detachment of the microspheres from the scaffold via cellular degradation.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547496 |
Date | January 2011 |
Creators | Tseng, Yuan-Tsan |
Contributors | Czernuszka, Jan T. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:e67c780d-d60f-42e7-9311-dd523f9141b3 |
Page generated in 0.0016 seconds