Return to search

Fluorescence endoscopic imaging system for detection of colonic adenomas

Thesis (Ph.D.)--Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1996. / Includes bibliographical references (p. [137]-144). / Background/Aims: Autofluorescence spectra have been collected from colonic mucosa with optical fiber contact probes. This technique was found to be sensitive to the biochemical and microarchitectural differences between normal and pre-malignant tissue. It is desired to extend this method to wide area surveillance using endoscopically-collected fluorescence images. Methods: An analytic model was developed to determine the number of photons collected endoscopically in terms of system parameters. This model was used to design a prototype fluorescence imaging instrument. Excitation light at 3 51 and 364 nm was delivered through an optical fiber at a power of 300 mW. Fluorescence images over the spectral bandwidth from 400 to 700 nm were collected from colonic mucosa in 33 ms frames . . fluorescence images were collected in vitro from colectomy specimens from patients with familial adenomatous polyposis and in vivo from patients undergoing routine colonoscopy. Each raw image was corrected for differences in distance and instrument light collection efficiency by normalizing to a spatially averaged image. Intensity thresholding was then used to identify diseased regions of mucosa. Results: For the in vitro studies, a sensitivity of 90% and a specificity of 92% were achieved with the threshold set to 75% of the average normal intensity. The average fluorescence intensity from normal mucosa was found to be greater than that from the adenomas by a factor of 2.2 ± 0.6. For the in vivo images, a sensitivity of 86% for adenomas and a specificity of 100% for hyperplastic polyps were achieved at a threshold of 75%. On average, the ratio between the fluorescence intensity of normal mucosa and that from adenomas was 2.0 ± 0.6 and that from hyperplastics was 1.1 ±. 0.2. The diseased regions on fluorescence were best localized when the colonoscope was directed at normal incidence to the mucosa. At higher angles there were greater effects of artifacts from shadows. Conclusions: Autofluorescence images of colonic mucosa can be collected endoscopically in vitro and in vivo. With image processing techniques, dysplasia can be detected and localized with high sensitivity and specificity. These results demonstrate the potential of this method to direct biopsy site selection. / by Thomas D. Wang. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/8972
Date January 1996
CreatorsWang, Thomas D. (Thomas Duen-Shyr)
ContributorsMichael S. Feld., Whitaker College of Health Sciences and Technology., Whitaker College of Health Sciences and Technology, Harvard University--MIT Division of Health Sciences and Technology
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format191 p., 19169322 bytes, 19169078 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0017 seconds