Return to search

MICROSTRUCTURE OF NANO AND MICRON SIZE DIAMOND-SIC COMPOSITES SINTERED UNDER HIGH PRESSURE HIGH TEMPERATURE CONDITIONS

Compacts and composites were sintered under high pressure (2 GPa - 10 GPa) and high temperature (1400 - 2300 ° C) conditions. The compacts were sintered using nano-SiC powder, micron-diamond powder, and nano-diamond powder. Composites were sintered using the liquid infiltration method from nano-silicon powder and nano or micron diamond powder. Under the high pressure, high temperature conditions the silicon powder would melt and react with carbon from the diamonds to form a SiC matrix.
The microstructure and strain of the composites and compacts was analyzed using X-ray diffraction analysis. The extended convolutional multiple whole profile fitting method was used to analyze the X-ray line profiles to determine average crystallite size, dislocation density, and planar fault probability. The apparent lattice parameter method was used to analyze strain. Below a certain pressure there was subgrain growth. However, at the higher pressures there was a reduction in crystallite size. In the SiC phase there was a correlation between predominate defect, dislocation or planar fault, and the crystallite size. The defect structure of the diamonds seemed to be dependent on the initial diamond powder used. At higher temperatures there was evidence of recovery and or recrystallization.

Identiferoai:union.ndltd.org:TCU/oai:etd.tcu.edu:etd-10152009-102152
Date15 October 2009
CreatorsNauyoks, Stephen Edwin
ContributorsWaldek Zerda
PublisherTexas Christian University
Source SetsTexas Christian University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf, application/octet-stream
Sourcehttp://etd.tcu.edu/etdfiles/available/etd-10152009-102152/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to TCU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0013 seconds