Return to search

SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY OF MOLYBDENUM(VI) DI- AND MONOOXO ARYLOXIDES

The chemistry of molybdenum is immensely rich and diverse. Molybdenum is essential for life, and has many applications in industry.
The first chapter offers a general perspective of the chemistry of molybdenum in high oxidation states dominated by diverse oxo species, such as the MoO22+ and MoO4+ units that are focus of my research. I describe the importance of MoO22+ complexes as models for the active sites of oxo transfer molybdoenzymes (e.g. DMSO oxidase) and for industrial heterogeneous transformation such as the SOHIO process (one of our ultimate goals). I also outline the importance of MoO4+ complexes as procatalysts for metathesis polymerization and as models of deoxygenated active sites of MoO22+ oxygen catalysts that have triggered our interest.
The second chapter introduces the synthesis and full characterization of 4-, 5- and 6-coordinated MoO2(OAr)2L0-1 complexes with bulky aryloxide ligands, starting from the MoO2Cl2 or MoO2Cl2(DMF)2 precursors. Steric and electronic modifications in the aryloxide moieties were performed in order to understand their effect in the final structure and yields of the synthesized complexes. The nature and mechanism of formation of the radical species detected in their synthesis is proposed.
The third chapter presents the facile synthesis of varios MoO(OAr)4-nCln complexes starting from the MoO2Cl2 precursor. Their mechanism of formation is proposed and the supporting evidence for this new reaction is provided. Steric and electronic modifications in the aryloxide moieties were used to study their structural and electronic effects in the MoO4+ complexes.
The fourth chapter outlines the synthesis of Mo(VI) monooxo bisphenoxides with a characteristic cis-chloro cis-bisphoxide arrangement around the MoO4+ unit. Electronic and steric modifications in the bisphenoxide rings were done to determine their effect in the structure and reactivity of the final complexes.
The fifth chapter introduces the application of the synthesized MoO(OAr)4-nCln and MoO(bisphenoxides)2Cl2 complexes as procatalysts for olefin metathesis polymerization of norbornene. The correlation between structure and reactivity of the procatalyst is discussed.

Identiferoai:union.ndltd.org:TCU/oai:etd.tcu.edu:etd-10272008-104115
Date27 October 2008
CreatorsQuiroz-Guzman, Mauricio
ContributorsTracy A. Hanna
PublisherTexas Christian University
Source SetsTexas Christian University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf, application/msword, application/octet-stream, application/zip
Sourcehttp://etd.tcu.edu/etdfiles/available/etd-10272008-104115/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to TCU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds