La tomographie d'émission monophotonique (TEMP) dédiée au petit animal est une technique d'imagerie nucléaire qui joue un rôle important en imagerie moléculaire. Les systèmes TEMP, à l'aide de collimateurs pinholes ou multi-pinholes, peuvent atteindre des résolutions spatiales submillimétriques et une haute sensibilité pour un petit champ de vue, ce qui est particulièrement attractif pour imager des souris. Une géométrie de collimation originale a été proposée, dans le cadre d'un projet, appelé SIGAHRS, piloté par la société Biospace. Ce collimateur présente des longueurs focales qui varient spatialement dans le plan transaxial et qui sont fixes dans le plan axial. Une haute résolution spatiale est recherchée au centre du champ de vue, avec un grand champ de vue et une haute sensibilité. Grâce aux simulations Monte Carlo, dont nous pouvons maîtriser tous les paramètres, nous avons étudié cette collimation originale que nous avons positionnée par rapport à un collimateur parallèle et un collimateur monofocal convergent. Afin de générer des données efficacement, nous avons développé un module multi-CPU/GPU qui utilise une technique de lancer de rayons dans le collimateur et qui nous a permis de gagner un facteur ~ 60 en temps de calcul, tout en conservant ~ 90 % du signal, pour l'isotope ⁹⁹^mTc (émettant à 140,5 keV), comparé à une simulation Monte Carlo classique. Cependant, cette approche néglige la pénétration septale et la diffusion dans le collimateur. Les données simulées ont ensuite été reconstruites avec l'algorithme OSEM. Nous avons développé quatre méthodes de projection (une projection simple (S-RT), une projection avec volume d'intersection (S-RT-IV), une projection avec calcul de l'angle solide (S-RT-SA) et une projection tenant compte de la profondeur d'interaction (S-RT-SA-D)). Nous avons aussi modélisé une PSF dans l'espace image, anisotrope et non-stationnaire, en nous inspirant de la littérature existante. Nous avons étudié le conditionnement de la matrice système pour chaque projecteur et collimateur, et nous avons comparé les images reconstruites pour chacun des collimateurs et pour chacun des projecteurs. Nous avons montré que le collimateur original proposé est le système le moins bien conditionné. Nous avons aussi montré que la modélisation de la PSF dans l'image ainsi que de la profondeur d'intéraction améliorent la qualité des images reconstruites ainsi que le recouvrement de contraste. Cependant, ces méthodes introduisent des artefacts de bord. Comparé aux systèmes existants, nous montrons que ce nouveau collimateur a un grand champ de vue (~ 70 mm dans le plan transaxial), avec une résolution de 1,0 mm dans le meilleur des cas, mais qu'il a une sensibilité relativement faible (1,32x10⁻² %). / Small animal single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that plays an important role in molecular imaging. SPECT systems using pinhole or multi-pinhole collimator can achieve submillimetric spatial resolution and high sensitivity in a small field of view, which is particularly appropriate for imaging mice. In our work, we studied a new collimator dedicated to small animal SPECT, in the context of a project called SIGAHRS, led by the Biospace company. In this collimator, focal lengths vary spatially in the transaxial plane and are fixed in the axial plane. This design aims at achieving high spatial resolution in the center of the field of view, with a large field of view and high sensitivity. Using Monte Carlo simulations, where all parameters can be controlled, we studied this new collimator geometry and compared it to a parallel collimator and a cone-beam collimator. To speed up the simulations, we developed a multi-CPU/GPU module that uses a technique of ray tracing. Using this approach, the acceleration factor was ~ 60 and we restored ~ 90 % of the signal for ⁹⁹^mTc (140.5 keV emission), compared to a classical Monte Carlo simulation. The 10 % difference is due to the fact that the multi-CPU/GPU module neglects the septal penetration and scatter in the collimator. We demonstrated that the data acquired with the new collimator could be reconstructed without artifact using an OSEM algorithm. We developed four forward projectors (simple projector (S-RT), projector accounting for the surface of the detecting pixel (S-RT-IV), projection modeling the solid angle (S-RT-SA) of the projection tube, and projector modeling the depth of interaction (S-RT-SA-D)). We also modeled the point spread function of the collimator in the image domain, using an anisotropic non-stationary function. To characterize the reconstruction, we studied the conditioning number of the system matrix for each projector and each collimator. We showed that the new collimator was more ill-conditioned than a parallel collimator or a cone-beam collimator. We showed that the image based PSF and the modeling of the depth of interaction improved the quality of the images, but edge artefacts were introduced when modeling the PSF in the image domain. Compared to existing systems, we showed that this new collimator has a large field of view (~ 70 mm in the transaxial plane) with a resolution of 1.0 mm in the best case but suffers from a relatively low sensitivity (1.32x10⁻² %).
Identifer | oai:union.ndltd.org:theses.fr/2013PA112315 |
Date | 05 December 2013 |
Creators | Benoit, Didier |
Contributors | Paris 11, Buvat, Irène |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0899 seconds