Anthropogenic pollution of water resources and the environment by various hazardous compounds and classes of substances raises concerns about public health impacts and environmental damage. Commercially available, portable and easy-to-use devices to detect and quantify these compounds are rather sparse, but would contribute to comprehensive monitoring and reliable risk assessment. The Soft Colloidal Probe (SCP) assay is a promising platform for the development of portable
analytical devices and thus has a great potential for a transfer to industry. This assay is based on the differential deformation of an elastic particle, i.e., the SCP, as a function of analyte concentration, which affects the extent of interfacial interactions between the SCP and a biochip surface.
The objective of this work was to adapt this assay for the detection of anthropogenic pollutants. Biomimetic molecular recognition approaches were used based on naturally occurring target proteins that specifically bind the anthropogenic pollutants of interest. This adaptation included the elaboration of strategies for site-specific immobilization of the respective proteins and functionalization of SCPs. In this work, it is demonstrated that the SCP method can be employed for the highly specific and sensitive detection of the critically discussed pesticide glyphosate by using the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Furthermore, a specific detection scheme for estrogens and compounds with estrogenic and antiestrogenic activity was developed by harnessing estrogen sulfotransferase as the biomimetic recognition element.
In the second part of the thesis, improvements of the SCP sensing methodology are described. These improvements were achieved by accelerating data analysis and developing a novel synthesis method for SCPs that ensures monodisperse particles with superior reproducibility. Rapid extraction of interaction energies is achieved by using a pattern matching algorithm that reduces the time required for data analysis to a fraction. The microfluidics-assisted synthesis of SCPs enables the production of highly monodisperse SCPs with adjustable size and mechanical properties. Various functionalization approaches have been developed that allow easy and modular introduction of functional groups and biomolecules for SCP-based sensing approaches.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78994 |
Date | 29 April 2022 |
Creators | Rettke, David |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds