Return to search

Etude spectroscopique en conditions hydrodynamiques contrôlées du transfert des espèces organiques à l'interface minéral / solution / Spectroscopic study under controlled hydrodynamic conditions of the transfer of organic species at the mineral / solution interface

Les travaux présentés dans ce mémoire de thèse contribuent à identifier les mécanismes physico-chimiques qui contrôlent le transfert de solutés organiques à l’interface de la phase aqueuse et d’un assemblage minéral de type sable - oxyde de fer comme ceux qui existent dans les sols naturels. Dans le même temps, l’influence des conditions hydrodynamiques sur le transfert a permis de déterminer dans quelle mesure des constantes d’adsorption obtenues en batch sont utilisables pour décrire le transport réactif en milieu poreux. Nous avons synthétisé dans cette étude des matériaux minéraux qui consistent à associer un sable et un oxyde de fer, la gœthite ou l’hématite, respectivement par précipitation (GCS, Goethite Coated Sand) ou par déposition sur le sable (HCS, Hematite Coated Sand). D’après l’étude infrarouge de GCS, les hydroxyles de surface du quartz sont impliqués dans le dépôt d’oxyde de fer tandis que les spectres Raman montrent la contrainte mécanique exercée par les oxydes sur le réseau cristallin du quartz. Ces résultats justifient la forte adhésion de l’oxyde sur le support de quartz. Des expériences d’adsorption du salicylate et du gentisate ont été menées en batch pour comprendre et modéliser les aspects cinétique et thermodynamique de chaque réaction. Pour les expériences en colonne, les paramètres hydrodynamiques (porosité, dispersivité, nombre de Péclet) ont été déduits d’un traçage préalable à l’enregistrement des courbes de percée. Les données macroscopiques provenant de batch et d’une colonne ont été confrontées aux informations moléculaires apportées par des spectres Raman et infrarouge enregistrés après sorption, pour préciser la structure la plus probable du complexe de surface dans chaque cas. Le salicylate sorbé sur GCS forme une structure de type mononucléaire bidentate (chélate), en batch comme en colonne : un oxygène carboxylique et l’oxygène du phénol en ortho sont liés à un atome de fer de la surface de la gœthite. Quel que soit le débit, les courbes de percée du salicylate à travers GCS présentent deux étapes. Ce comportement s’explique par un changement de pH qui modifie la capacité d’adsorption en cours d’expérience, et surtout par un déplacement d’équilibre d’adsorption. Sur GCS, certains sites réactifs de surface sont initialement occupés par des silicates que le salicylate remet en solution pour prendre leur place. Les calculs effectués selon cette hypothèse sont cohérents avec les informations expérimentales. Cette singularité par rapport au gentisate tient aux propriétés de sorption que présente le salicylate vis-à-vis de l’assemblage GCS. Pour les deux molécules, les quantités adsorbées à l’équilibre identiques en batch et en colonne, et la faible évolution des courbes de percée en fonction du débit montrent que l’équilibre thermodynamique local est atteint. Sur le solide HCS, la quantité de gentisate ou salicylate adsorbée en batch est nettement plus grande que celle qui est retenue en colonne. Ce comportement indépendant de la molécule et caractéristique d’un non-équilibre, viendrait avant tout du système HCS (nanohématite sur quartz) en colonne. Les perspectives pour affiner ces explications se situent au niveau des spectroscopies de vibration in situ, capables de suivre l’adsorption en temps réel sans perturber le système : spectres Raman in situ en rétrodiffusion à différentes positions le long de la colonne, spectres infrarouges en réflexion totale atténuée grâce à une fibre optique à l’intérieur de la colonne / The present work contributes to identify the physico-chemical mechanisms controlling the transfer of organic solutes at the interface between an aqueous solution and a mineral assemblage such as sand-iron oxide similar to naturally occurring iron bearing minerals in soils. In parallel, the influence of hydrodynamic conditions on the transfer let to determine under which conditions adsorption constants obtained from batch are suitable to describe reactive transport in porous media. We synthesized in this study some mineral materials based on the association of one sand and one iron oxide, either goethite or hematite, respectively by precipitation (GCS, Goethite Coated Sand) or by deposition on sand (HCS, Hematite Coated Sand). According to the infrared study of GCS, the hydroxyl groups of quartz surface are involved in the iron oxide-coating and Raman spectra show that oxides apply mechanical strain on crystalline lattice of quartz. These findings justify the strong adhesion of the iron oxide on the quartz support. Experiments to study adsorption of salicylate and gentisate were conducted in batch in order to understand and modelize kinetic and thermodynamic aspects of each reaction. For column experiments, the hydrodynamic parameters (porosity, dispersivity, Peclet number) were deduced from a non-reactive tracer experiment before the breakthrough curves of organic compounds were recorded. Macroscopic sorption data from batch and column were confronted to molecular information provided by Raman end infrared spectra recorded after sorption to clarify the most likely structure of surface complex in each case. Salicylate sorbed onto GCS forms a mononuclear bidentate structure (chelate), both in batch and in column: one carboxylic oxygen and the ortho phenolic oxygen bind one iron atom of the goethite surface. Whatever the flow rate is, the breakthrough curves of salicylate through GCS display two stages. This behaviour can be explained by an effect of pH that changes during the adsorption and mostly by the displacement of an adsorption equilibrium. Indeed some reactive surface sites on GCS are initially occupied by silicates and salicylate puts them back to solution when replacing them. Calculations based on this hypothesis agree with experimental data. This singularity of salicylate compared to gentisate is due to sorption properties of salicylate towards GCS assemblage. For both molecules, adsorbed amounts at equilibrium are equal in batch and in column and breakthrough curves do not depend very much on the flow rate, indicating that local thermodynamic equilibrium is achieved in column. On HCS, the amount of gentisate or salicylate sorbed in batch is much higher than that retained in column. This behaviour independent of the molecule is typical of non-equilibrium and may be a characteristic of HCS system (nanohematite on quartz) in column. In prospect, these explanations could be refined by developing in situ vibrational spectroscopies to supervise the adsorption process in real time and without disturbing the system: in situ backscattering Raman spectra at different positions alongside the column and/or attenuated total reflexion infrared spectra by using an optical fiber installed in the column

Identiferoai:union.ndltd.org:theses.fr/2010NAN10028
Date12 March 2010
CreatorsRusch, Benoît
ContributorsNancy 1, Humbert, Bernard, Hanna, Khalil
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds