Return to search

The impact of genetic and nutritional disturbances of folate metabolism on tumourigenesis in a mouse model of colorectal cancer /

The relationship between colorectal cancer (CRC) and folate metabolism is complex. Dietary folate, depending on the timing and dose, may either prevent or enhance tumour initiation and/or growth, and polymorphisms in the genes encoding folate-metabolising enzymes may also modulate risk. In this thesis, the Apcmin/+ mouse model of CRC was used to investigate the effect of nutritional and genetic disturbances in folate metabolism on tumourigenesis and to examine various mechanisms. / The reduced folate carrier I (RFC1) is responsible for the cellular uptake and intestinal absorption of folate, primarily the 5-methyltetrahydrofolate (5-methylTHF) derivative. Methionine synthase (MTR) uses 5-methylTHF to remethylate homocysteine to methionine, which may be activated and used to methylate substrates such as DNA. 5-MethylTHF is also the product of the methylenetetrahydrofolate reductase (MTHFR)-catalysed reduction of 5,10-methyleneTHF, which is also used to convert dUMP to dTMP. / Adenoma number and load were reduced in Rfc1+/-Apc min/+ mice, compared with Rfc1+/+Apc min/+ mice, but were similar in Mtr+/-Apc min/+ and Mtr+/+ Apcmin/+ mice. Neither Rfc1 nor Mtr genotype affected global DNA methylation, apoptosis or plasma homocysteine (tHcy) levels. In the experiments involving Mtr mice, dietary folate deficiency increased adenoma number, plasma tHcy, and apoptosis, and decreased global DNA methylation. Neither Mtr nor Rfc1 genotype affected the dUTP/dTTP ratio in the intestine of mice not predisposed to adenoma formation. / Adenoma number was decreased in Mthfr+/-Apc min/+ mice (compared with Mthfr+/+Apc min/+ mice) and in Mthfr+/+Apc min/+ offspring of Mthfr+/- mothers (compared with Mthfr+/+Apcmin/+ offspring of Mthfr+/+ mothers). A folate-deficient diet, when initiated prior to conception, significantly decreased adenoma number and decreased global DNA methylation. Overall, adenoma number was inversely correlated with plasma tHcy, dUTP/dTTP ratio and apoptosis. When initiated at three weeks of age, a folate-enriched diet significantly increased adenoma number in Apcmin/+ mice. In the intestines of mice not predisposed to adenoma formation, Mthfr deficiency decreased, and folic acid deficiency increased, the dUTP/dTTP ratio. / These results support the evidence that MTHFR polymorphisms are protective in CRC tumourigenesis and that depending on stage or predisposition, folate may inhibit or enhance tumour growth.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.111885
Date January 2007
CreatorsLawrance, Andrea Karin.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Human Genetics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002652483, proquestno: AAINR38601, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds