This thesis studies the uni-axial behaviour of circular double-skinned concrete-filled-steel-tubular (CFST) columns with external confinement in form of external steel rings. Particular attention is paid to the experimental behaviour of double-skinned CFST columns and theoretical model for evaluating the loadcarrying capacity of un- and ring-confined double-skinned CFST columns.
Experimental studies on circular double-skinned CFST columns with various spacing of confinement, concrete strength and hollow ratio were conducted and discussed comprehensively. The mechanical properties of double-skinned CFST columns such as elastic stiffness, elastic strength, load-carrying capacity and ductility are presented. From the result, it is found that the elastic stiffness, elastic strength, load-carrying capacity and ductility are enhanced by installing the external steel rings to the outer tube as external confinement. To verify the effectiveness of external steel rings, the Poisson’s ratios of the double-skinned CFST columns are listed and found to be similar to that of concrete so that a perfect bonding is maintained. To emphasis the excellent performance of double-skinned CFST columns with external rings under uni-axial compression, the load-carrying capacity, elastic strength and elastic stiffness are compared to those of single-skinned CFST columns and reinforced concrete columns.
To fill up the gap that no design model is provided in Eurocode 4 (EC4) for confined double-skinned CFST columns, a theoretical model based on the force equilibrium condition is proposed for evaluating the load-carrying capacity of both un- and ring-confined double-skinned CFST columns. The model takes into account the composite action between the steel tubes and core concrete. To verify the proposed model, numerous test results obtained by the author and other researchers are used for comparing the theoretical results.
According to the above theoretical model above, a parametric study is carried out to investigate the effect of various geometry and material properties on the load-carrying capacity of double-skinned CFST columns. The confining pressure is expressed in terms of geometry and material factors. A simplified design formula is proposed to facilitate the preliminary design of double-skinned CFST columns with and without external confinement. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
Identifer | oai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/195975 |
Date | January 2013 |
Creators | Dong, Chunxiao, 董春宵 |
Contributors | Ho, JCM |
Publisher | The University of Hong Kong (Pokfulam, Hong Kong) |
Source Sets | Hong Kong University Theses |
Language | English |
Detected Language | English |
Type | PG_Thesis |
Rights | The author retains all proprietary rights, (such as patent rights) and the right to use in future works., Creative Commons: Attribution 3.0 Hong Kong License |
Relation | HKU Theses Online (HKUTO) |
Page generated in 0.002 seconds