Made available in DSpace on 2016-06-02T19:55:36Z (GMT). No. of bitstreams: 1
5228.pdf: 2240292 bytes, checksum: 0afa7318b447dd1c9b5cbc1d58e3434b (MD5)
Previous issue date: 2013-04-29 / Universidade Federal de Sao Carlos / Cephalosporins are β-lactam antibiotics which are widely used in the treatment of bacterial infections. Within this group, cephamycin C (CefC) stands out from the others cephalosporins antibiotics due to its greater resistance to β-lactamases enzymes and its broader spectrum of action against Gram-negative pathogens. It is produced by the bacteria Nocardia lactamdurans and Streptomyces clavuligerus, usually in submerged fermentation. In the literature, the available information about the purification processes of this antibiotic are restricted to patents or papers published in the past decades. As cefC is the raw material for the production of important semi-synthetic antibiotics and due to the lack of scientifically substantiated information about its separation and purification processes, the motivation for the development of this thesis has arisen. Then, the aim of this thesis was to study the purification process of CefC produced by S. clavuligerus, by using the processes of adsorption and ion exchange in fixed bed columns. The techniques of adsorption and ion exchange present themselves as good strategies for CefC purification due to the amphoteric nature of the antibiotic molecule, which has positive or negative charges depending on the environmental pH, and the bicyclic nucleus in its structure, which allows the interaction with hydrophobic structures. As there is no chemical standard of cefC available on the market, in this study we have only used culture broth containing this antibiotic. The adsorbents evaluated were the neutral resins Amberlite XAD4 and Amberlite XAD16 and the anionic resin Q Sepharose XL. At first, ion exchange column experiments using the resin QXL were carried out. The results showed that the variation of the flow rate in the range of 2.5 mL/min to 7.5 mL/min did not affect the efficiencies of product recovery nor of bed utilization, and it did not interfere with the bioactive compounds elution. The isocratic elution modes using 0.1% or 1% NaCl (w / v) were able to separate cefC from other (s) compound (s) with antimicrobial activity present in the broth, which were not identified. But the use of 1% NaCl solution promoted the antibiotic recovery in a shorter process time and smaller volume than using 0.1 % NaCl solution. After analysis by mass spectrometry, carried out by ESI ionization in the positive mode, it was observed that the ion exchange process with QXL resin followed by adsorption on a C18 SPE cartridge were able to separate cefC from compound (s) whose molecules after ionization acquired m/z ratios corresponding to the lysine s molecule, and they also reduced the concentration of contaminants with m/z ratios corresponding to the molecules of penicillin N, deacetylcephalosporin C and deacetoxycephalosporin C. As the ion exchange studies were done, the adsorption studies using the neutral resins were initiated. At first, adsorption isotherms of cefC on XAD4 and XAD16 resins were obtained, and the effects of pH and temperature in the adsorption equilibrium were evaluated. The results showed that the broth pH had strong influence on the adsorption and the best condition was observed at pH 2.6 at 15° C. The kinetic experiments have shown that equilibrium is reached more quickly on the resin XAD16. Estimation of intrinsic kinetic parameters and mass transfer coefficients returned higher values for this resin. The column adsorption processes with XAD4 resin, when the column feed consisted of the ultrafiltered or clarified broth and the elution solutions were 1% or 5% (v/v) EtOH solutions, did not lead to separation of cefC from contaminants that were monitored in the experiments. But when the feed consisted of a preAbstract iv purified fraction, obtained in the ion exchange column with QXL resin, added with cephalosporin C, it was possible to separate the two antibiotics. Cephalosporin C was added to simulate the presence of some contaminants in the culture broth - deacetylcephalosporin C and deacetoxycephalosporin C. As these contaminants are in very low concentrations and there are not commercial chemical standards available to purchase, neither an analytical methodology to quantify them, it was decided to add cephalosporin C, whose chemical structure is very similar to the contaminants, the commercial standard is commercially available and there is a quantification method to determinate it. The column experiments with resin XAD16 showed similar results to the experiments with resin XAD4, in which it was also observed the separation of cefC from cephalosporin C. The moment analysis of the chromatographic peaks showed that cefC average retention times and peak dispersions were smaller in the column assays with XAD16 than with XAD4. Thus, a more concentrated fraction containing cefC was obtained in the column experiments with XAD16 resin. Therefore, it was demonstrated by the purification processes studied that the techniques of adsorption and ion exchange were effective in the purification of cefC in relation to contaminants that are difficult to separate / As cefalosporinas são antibióticos β-lactâmicos muito utilizados no tratamento de infecções bacterianas. Dentro do grupo, a cefamicina C (cefC) se destaca devido a sua maior resistência à ação das β-lactamases bacterianas e ao seu maior espectro de ação contra patógenos Gramnegativos. Ela é produzida pelas bactérias Nocardia lactamdurans e Streptomyces clavuligerus, geralmente em cultivos submersos. Na literatura, as informações existentes sobre os processos de purificação deste antibiótico estão disponíveis apenas em patentes ou em artigos publicados em décadas passadas. Sendo um composto que é matéria-prima para produção de antibióticos semissintéticos de grande importância clínica e comercial, e devido à falta de informações fundamentadas cientificamente sobre os processos de separação e purificação deste antibiótico, surgiu a motivação para o desenvolvimento desta tese. Assim, o objetivo deste trabalho foi estudar a purificação da cefC produzida por S. clavuligerus, utilizando o processo de adsorção e troca iônica em colunas de leito fixo. As técnicas de adsorção e troca iônica apresentam-se como uma boa estratégia para purificação da cefC devido à natureza anfótera da molécula do antibiótico, que possui cargas positivas ou negativas dependendo do pH do meio, e ao núcleo bicíclico em sua estrutura, que permite a interação com estruturas hidrofóbicas. Como não há o padrão da cefC disponível no mercado, neste estudo trabalhou-se apenas com o caldo de cultivo. Os adsorventes avaliados foram as resinas neutras Amberlite XAD4 e Amberlite XAD16 e a resina de troca iônica Q Sepharose XL. Inicialmente, foram realizados experimentos em coluna de troca iônica com a resina QXL. Os resultados destes ensaios mostraram que a variação da vazão no intervalo de 2,5 mL/min a 7,5 mL/min não alterou as eficiências de recuperação do produto e de utilização do leito, nem interferiram na eluição dos compostos bioativos. A eluição no modo isocrático com solução de NaCl 1% (m/v) possibilitou a separação da cefC de outro(s) composto(s) com atividade antimicrobiana presentes no caldo, mas não identificados, e promoveu uma recuperação do antibiótico em um tempo menor de processo e em um volume menor de solução que a eluição com NaCl 0,1%. Após análise por espectrometria de massas, com ionização feita por ESI no modo positivo, observou-se que o processo de troca iônica seguido da adsorção em cartucho de SPE C18 foi capaz de separar a cefC de composto(s) com a razão m/z correspondente à lisina, e diminuir a concentração de contaminantes presentes no caldo cujas moléculas apresentaram, após ionização, razão m/z correspondentes à das moléculas de penicilina N, desacetilcefalosporina C e desacetoxicefalosporina C. Finalizados os experimentos de troca iônica, iniciaram-se os estudos de adsorção utilizando as resinas neutras. Os primeiros experimentos consistiram na determinação de isotermas de adsorção da cefC nas resinas XAD4 e XAD16, avaliando a influência do pH e da temperatura no equilíbrio de adsorção. Os resultados mostraram que o pH do caldo teve drástica influência na adsorção, sendo que a melhor condição observada foi no valor de pH 2,6 à 15°C. Os ensaios cinéticos mostraram que o equilíbrio é atingido mais rapidamente na resina XAD16. A estimativa dos parâmetros cinéticos intrínsecos e de transferência de massa retornaram valores maiores para esta resina. O processo de adsorção em coluna com a resina XAD4, quando a alimentação da coluna consistiu do caldo ultrafiltrado ou clarificado e a eluição foi feita com as soluções de EtOH 1% ou 5% (v/v), não levou à separação da cefC dos contaminantes que Resumo ii foram monitorados nos ensaios. Mas quando a alimentação foi feita com uma fração prépurificada, oriunda da troca iônica, adicionada de cefalosporina C, foi possível obter a separação dos dois antibióticos. A cefalosporina C foi adicionada para simular a presença de alguns contaminantes presentes no caldo de cultivo a desacetilcefalosporina C e desacetoxicefalosporina C. Como estes contaminantes estão em concentrações muito baixas e não existem os padrões comerciais disponíveis para serem adquiridos, nem metodologia analítica para quantificá-los, optou-se por adicionar cefalosporina C, cuja estrutura química é bem similar à dos contaminantes, existe o padrão comercial para ser adquirido e possui um método de quantificação. Os experimentos em coluna com a resina XAD16 mostraram resultados similares aos experimentos com a resina XAD4, nos quais também foi observada a separação entre a cefC e a cefalosporina C. Após análise dos momentos dos picos cromatográficos, verificou-se que a cefC apresentou tempos de retenção médios menores na resina XAD16 e a dispersão dos picos foi menor. Desta forma, foi obtida uma fração mais concentrada em cefC nos ensaios em coluna com esta resina do que com a resina XAD4. Portanto, pôde-se constatar pelo processo de purificação estudado que as técnicas de adsorção e troca iônica mostraram-se eficientes na purificação da cefC em relação a contaminantes difíceis de serem separados.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/3932 |
Date | 29 April 2013 |
Creators | Oliveira, Liliane Maciel de |
Contributors | Pasotto, Marlei Barboza |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Engenharia Química, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0051 seconds