Commodities primárias, tais como metais, petróleo e agricultura, constituem matérias-primas fundamentais para a economia mundial. Dentre os metais, destaca-se o alumínio, usado em uma ampla gama de indústrias, e que detém o maior volume de contratos na London Metal Exchange (LME). Como o preço não está diretamente relacionado aos custos de produção, em momentos de volatilidade ou choques econômicos, o impacto financeiro na indústria global de alumínio é significativo. Previsão de preços do alumínio é fundamental, portanto, para definição de política industrial, bem como para produtores e consumidores. Este trabalho propõe um modelo ótimo de previsões para preços de alumínio, por meio de combinações de previsões e de seleção de modelos através do Model Confidence Set (MCS), capaz de aumentar o poder preditivo em relação a métodos tradicionais. A abordagem adotada preenche uma lacuna na literatura para previsão de preços de alumínio. Foram ajustados 5 modelos individuais: AR(1), como benchmarking, ARIMA, dois modelos ARIMAX e um modelo estrutural, utilizando a base de dados mensais de janeiro de 1999 a setembro de 2014. Para cada modelo individual, foram geradas 142 previsões fora da amostra, 12 meses à frente, por meio de uma janela móvel de 36 meses. Nove combinações de modelos foram desenvolvidas para cada ajuste dos modelos individuais, resultando em 60 previsões fora da amostra, 12 meses à frente. A avaliação de desempenho preditivo dos modelos foi realizada por meio do MCS para os últimos 60, 48 e 36 meses. Um total de 1.250 estimações foram realizadas e 1.140 variáveis independentes e suas transformadas foram avaliadas. A combinação de previsões usando ARIMA e um ARMAX foi o único modelo que permaneceu no conjunto de modelos com melhor acuracidade de previsão para 36, 48 e 60 meses a um nível descritivo do MCS de 0,10. Para os últimos 36 meses, o modelo combinado proposto apresentou resultados superiores em relação a todos os demais modelos. Duas co-variáveis identificadas no modelo ARMAX, preço futuro de três meses e estoques mundiais, aumentaram a acuracidade de previsão. A combinação ótima apresentou um intervalo de confiança pequeno, equivalente a 5% da média global da amostra completa analisada, fornecendo subsídio importante para tomada de decisão na indústria global de alumínio. iii / Primary commodities, including metals, oil and agricultural products are key raw materials for the global economy. Among metals, aluminum stands out for its large use in several industrial applications and for holding the largest contract volume on the London Metal Exchange (LME). As the price is not directly related to production costs, during volatility periods or economic shocks, the financial impact on the global aluminum industry is significant. Aluminum price forecasting, therefore, is critical for industrial policy as well as for producers and consumers. This work has proposed an optimal forecast model for aluminum prices by using forecast combination and the Model Confidence Set for model selection, resulting in superior performance compared to tradicional methods. The proposed approach was not found in the literature for aluminum price forecasting. Five individual models were developed: AR(1) for benchmarking, ARIMA, two ARIMAX models and a structural model, using monthly data from January 1999 to September 2014. For each individual model, 142 out-of-sample, 12 month ahead, forecasts were generated through a 36 month rolling window. Nine foreast combinations were deveoped for each individual model estimation, resulting in 60 out-of-sample, 12 month ahead forecasts. Model predictive performace was assessed through the Model Confidence Set for the latest 36, 48, and 60 months, through 12-month ahead out-of-sample forecasts. A total of 1,250 estimations were performed and 1,140 independent variables and their transformations were assessed. The forecast combination using ARMA and ARIMAX was the only model among the best set of models presenting equivalent performance at 0.10 MCS p-value in all three periods. For the latest 36 months, the proposed combination was the best model at 0.1 MCS p-value. Two co-variantes, identified for the ARMAX model, namely, 3-month forward price and global inventories increased forecast accuracy. The optimal forecast combination has generated a small confidence interval, equivalent to 5% of average aluminum price for the entire sample, proving relevant support for global industry decision makers.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02102015-094205 |
Date | 15 June 2015 |
Creators | João Bosco Barroso de Castro |
Contributors | Alessandra de Ávila Montini, Emerson Fernandes Marçal, Sergio Hideo Kubo, Emerson Fernandes Marçal, Carine Savalli Redigolo, Ricardo Humberto Rocha |
Publisher | Universidade de São Paulo, Administração, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds