Return to search

Coupled Large Eddy Simulations of combustion chamber-turbine interactions / Simulations aux Grandes Echelles couplées des interactions chambre de combustion-turbine

Les turbines à gaz modernes deviennent de plus en plus compactes, ce qui augmente les interactions entre leurs différents composants. Les interactions chambre de combustion-turbine sont particulièrement critiques car elles peuvent changer le champ aérothermique dans la turbine et réduire la durée de vie du moteur. Aujourd’hui, ces deux composants sont traités de façon indépendante, ce qui ne permet pas de prendre en compte leurs interactions. Cette thèse propose une approche couplée, basée sur les Simulations aux Grandes Échelles (SGE), une technique qui permet de prendre en compte toutes les interactions chambre de combustion-turbine. Dans la première partie de cette thèse, une méthode, compatible avec le code SGE AVBP, est proposée pour traiter les configurations rotor/stator de manière rigoureuse. Une série de cas test académiques vient prouver que l’interface respecte les propriétés des schémas numériques du code. Cette étude est suivie par une validation de l’approche dans le cas d'une turbine haute-pression mono-étage. Les résultats sont comparés avec des mesures expérimentales et l’influence des différents paramètres et modèles est établi. La deuxième partie de cette travail est dédiée à la prédiction des interactions chambre de combustion-turbine en utilisant les méthodes précédemment décrites et validées. Le premier type d’interaction étudié est la génération du bruit de combustion indirect dans une turbine haute pression. Ce bruit est créé lorsque des hétérogénéités de température, générées dans la chambre de combustion, sont accélérées dans la turbine. Pour simplifier les calculs, les hétérogénéités sont modélisées par des fluctuations de température sinusoïdales, injectées dans la turbine par les conditions limites. Les mécanismes de génération de bruit sont mis en évidence et le bruit de combustion indirect est mesuré et comparé avec une théorie analytique et des prédictions 2D. La deuxième application est un calcul couplé chambre de combustion-turbine qui analyse les interactions entre ces deux composants d’un point de vue aérothermique. Les caractéristiques instationnaires de l’écoulement à l’entrée de la turbine et la migration des hétérogénéités de température dans la turbine sont étudiées. Un calcul de la turbine seule est aussi effectué pour comparaison avec le calcul couplé. / Modern gas turbines are characterized by compact designs that enhance the interactions between its different components. Combustion chamber-turbine interactions, in particular, are critical as they may alter the aerothermal flow field of the turbine which can drastically impact the engine life duration. Current state-of-the-art treats these two components in a decoupled way and does not take into account their interactions. This dissertation proposes a coupled approach based on the high-fidelity Large Eddy Simulation (LES) formalism that can take into account all the potential paths of interactions between components. In the first part of this work, an overset grid method is proposed to treat rotor/stator configurations in a rigorous fashion that is compatible with the LES solver AVBP. This interface treatment is shown not to impact the characteristics of the numerical schemes on a series of academic test cases of varying complexity. The approach is then validated on a realistic high-pressure turbine stage. The results are compared against experimental measurements and the influence of different modeling and simulation parameters is evaluated. The second part of this work is dedicated to the prediction of combustion chamber-turbine interactions using the developed methodologies. The first type of interactions evaluated is the indirect combustion noise generation across a high-pressure turbine stage. This noise arises when combustor-generated temperature heterogeneities are accelerated in the turbine. To simplify the simulations the heterogeneities are modeled by sinusoidal temperature fluctuations injected in the turbine through the boundary conditions. The noise generation mechanisms are revealed by such LES and the indirect combustion noise is measured and compared to an analytical theory and 2D predictions. The second application is a fully-coupled combustor-turbine simulation that investigates the interactions between the two components from an aerothermal point of view. The rich flow characteristics at the turbine inlet, issued by the unsteady combustion in the chamber, are analyzed along with the migration of the temperature heterogeneities. A standalone turbine simulation serves as a benchmark to compare the impact of the fully coupled approach.

Identiferoai:union.ndltd.org:theses.fr/2015INPT0049
Date06 May 2015
CreatorsPapadogiannis, Dimitrios
ContributorsToulouse, INPT, Gicquel, Laurent, Sicot, Frédéric
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds