Return to search

Otimização de algoritmo de agrupamento de dados para a classificação supervisionada de padrões

Submitted by Luiz Felipe Barbosa (luiz.fbabreu2@ufpe.br) on 2015-03-09T12:49:55Z
No. of bitstreams: 2
DISSERTAÇÃO Evandro José da Rocha e Silva.pdf: 1864754 bytes, checksum: 7f438607b1d1280050c14f8d4b2df203 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-09T12:49:55Z (GMT). No. of bitstreams: 2
DISSERTAÇÃO Evandro José da Rocha e Silva.pdf: 1864754 bytes, checksum: 7f438607b1d1280050c14f8d4b2df203 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2014-02-25 / O reconhecimento de padrões é uma atividade frequente do ser humano. Entretanto
muitas vezes não somos capazes de lidar com o volume de informações disponíveis.
Para isso podemos recorrer às técnicas de Aprendizagem de Máquina, cujos algoritmos
permitem a um computador aprender e classificar padrões de forma segura e veloz.
Dentre os algoritmos que podem ser utilizados, existem aqueles que fazem parte dos
sistemas de múltiplos classificadores. Nesses sistemas, vários classificadores trabalham
em conjunto para a classificação dos padrões. O trabalho em conjunto pode ser realizado
através da abordagem de seleção de classificadores.
Neste trabalho foi desenvolvida uma metodologia para a construção de sistemas
de múltiplos classificadores. Inicialmente o método usa os dados de treinamento para
encontrar um mapa do agrupamento dos dados. Com isso, os dados de validação e
teste pertencentes a cada grupo são encontrados. Então os classificadores são criados e
treinados para cada grupo de dados. Através da abordagem de seleção de classificadores, o
melhor classificador para cada agrupamento é encontrado. Os classificadores selecionados
são usados para classificar os padrões não vistos que pertencem aos seus respectivos
grupos.
Foram implementadas duas versões do método proposto. A primeira, chamada
BMGGAVS, conseguiu um bom desempenho, superando, na maioria das vezes, todos
os outros métodos utilizados na comparação. A segunda versão do método, chamada
BMG2GA, possui uma maior automatização. O BMG2GA não conseguiu resultados tão
bons quanto os do BMGGAVS. Entretanto, em algumas situações, o BMG2GA conseguiu
resultados próximos ou até melhores que os resultados de alguns dos métodos usados para
comparação. Por causa desses últimos resultados, uma série de diretrizes são apresentadas
para trabalhos futuros.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/11377
Date25 February 2014
CreatorsSILVA, Evandro José da Rocha e
ContributorsLUDERMIR, Teresa Bernarda, ALMEIDA, Leandro Maciel
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguageBreton
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds