Return to search

Linear Models of Nonlinear Systems

<p>Linear time-invariant approximations of nonlinear systems are used in many applications and can be obtained in several ways. For example, using system identification and the prediction-error method, it is always possible to estimate a linear model without considering the fact that the input and output measurements in many cases come from a nonlinear system. One of the main objectives of this thesis is to explain some properties of such approximate models.</p><p>More specifically, linear time-invariant models that are optimal approximations in the sense that they minimize a mean-square error criterion are considered. Linear models, both with and without a noise description, are studied. Some interesting, but in applications usually undesirable, properties of such optimal models are pointed out. It is shown that the optimal linear model can be very sensitive to small nonlinearities. Hence, the linear approximation of an almost linear system can be useless for some applications, such as robust control design. Furthermore, it is shown that standard validation methods, designed for identification of linear systems, cannot always be used to validate an optimal linear approximation of a nonlinear system.</p><p>In order to improve the models, conditions on the input signal that imply various useful properties of the linear approximations are given. It is shown, for instance, that minimum phase filtered white noise in many senses is a good choice of input signal. Furthermore, the class of separable signals is studied in detail. This class contains Gaussian signals and it turns out that these signals are especially useful for obtaining approximations of generalized Wiener-Hammerstein systems. It is also shown that some random multisine signals are separable. In addition, some theoretical results about almost linear systems are presented.</p><p>In standard methods for robust control design, the size of the model error is assumed to be known for all input signals. However, in many situations, this is not a realistic assumption when a nonlinear system is approximated with a linear model. In this thesis, it is described how robust control design of some nonlinear systems can be performed based on a discrete-time linear model and a model error model valid only for bounded inputs.</p><p>It is sometimes undesirable that small nonlinearities in a system influence the linear approximation of it. In some cases, this influence can be reduced if a small nonlinearity is included in the model. In this thesis, an identification method with this option is presented for nonlinear autoregressive systems with external inputs. Using this method, models with a parametric linear part and a nonparametric Lipschitz continuous nonlinear part can be estimated by solving a convex optimization problem.</p> / <p>Linjära tidsinvarianta approximationer av olinjära system har många användningsområden och kan tas fram på flera sätt. Om man har mätningar av in- och utsignalerna från ett olinjärt system kan man till exempel använda systemidentifiering och prediktionsfelsmetoden för att skatta en linjär modell utan att ta hänsyn till att systemet egentligen är olinjärt. Ett av huvudmålen med den här avhandlingen är att beskriva egenskaper för sådana approximativa modeller.</p><p>Framförallt studeras linjära tidsinvarianta modeller som är optimala approximationer i meningen att de minimerar ett kriterium baserat på medelkvadratfelet. Brusmodeller kan inkluderas i dessa modelltyper och både fallet med och utan brusmodell studeras här. Modeller som är optimala i medelkvadratfelsmening visar sig kunna uppvisa ett antal intressanta, men ibland oönskade, egenskaper. Bland annat visas det att en optimal linjär modell kan vara mycket känslig för små olinjäriteter. Denna känslighet är inte önskvärd i de flesta tillämpningar och innebär att en linjär approximation av ett nästan linjärt system kan vara oanvändbar för till exempel robust reglerdesign. Vidare visas det att en del valideringsmetoder som är framtagna för linjära system inte alltid kan användas för validering av linjära approximationer av olinjära system.</p><p>Man kan dock göra de optimala linjära modellerna mer användbara genom att välja lämpliga insignaler. Bland annat visas det att minfasfiltrerat vitt brus i många avseenden är ett bra val av insignal. Klassen av separabla signaler detaljstuderas också. Denna klass innehåller till exempel alla gaussiska signaler och just dessa signaler visar sig vara speciellt användbara för att ta fram approximationer av generaliserade wiener-hammerstein-system. Dessutom visas det att en viss typ av slumpmässiga multisinussignaler är separabel. Några teoretiska resultat om nästan linjära system presenteras också.</p><p>De flesta metoder för robust reglerdesign kan bara användas om storleken på modellfelet är känd för alla tänkbara insignaler. Detta är emellertid ofta inte realistiskt när ett olinjärt system approximeras med en linjär modell. I denna avhandling beskrivs därför ett alternativt sätt att göra en robust reglerdesign baserat på en tidsdiskret modell och en modellfelsmodell som bara är giltig för begränsade insignaler.</p><p>Ibland skulle det vara önskvärt om en linjär modell av ett system inte påverkades av förekomsten av små olinjäriteter i systemet. Denna oönskade påverkan kan i vissa fall reduceras om en liten olinjär term tas med i modellen. En identifieringsmetod för olinjära autoregressiva system med externa insignaler där denna möjlighet finns beskrivs här. Med hjälp av denna metod kan modeller som består av en parametrisk linjär del och en ickeparametrisk lipschitzkontinuerlig olinjär del skattas genom att man löser ett konvext optimeringsproblem.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-5330
Date January 2005
CreatorsEnqvist, Martin
PublisherLinköping University, Linköping University, Automatic Control, Institutionen för systemteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, monograph, text
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 985

Page generated in 0.0028 seconds