Return to search

Distributed Massive MIMO : Random Access, Extreme Multiplexing and Synchronization

The data traffic in wireless networks has grown tremendously over the past few decades and is ever-increasing. Moreover, there is an enormous demand for speed as well. Future wireless networks need to support three generic heterogeneous services: enhanced mobile broadband(eMBB), ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC). Massive MIMO has shown to be a promising technology to meet the demands and is now an integral part of 5G networks.  To get high data rates, ultra densification of the network by deploying more base stations in the same geographical area is considered. This led to an increase in inter-cell interference which limits the capacity of the network. To mitigate the inter-cell interference, distributed MIMO is advocated. Cell-free massive MIMO is a promising technology to improve the capacity of the network. It leverages all the benefits from ultra densification, massive MIMO, and distributed MIMO technologies and operates without cell boundaries.  In this thesis, we study random access, extreme multiplexing capabilities, and synchronization aspects of distributed massive MIMO. In Paper A studies the activity detection in grant-free random access for mMTC in cell-free massive MIMO network. An algorithm is proposed for activity detection based on maximum likelihood detection and the results show that the macro-diversity gain provided by the cell-free architecture improves the activity detection performance compared to co-located architecture when the coverage area is large.  RadioWeaves technology is a new wireless infrastructure devised for indoor applications leveraging the benefits of massive MIMO and cell-free massive MIMO. In Paper B, we study the extreme multiplexing capabilities of RadioWeaves which can provide high data rates with very low power. We observe that the RadioWeaves deployment can spatially separate users much better than a conventional co-located deployment, which outweighs the losses caused by grating lobes and thus saves a lot on transmit power.  Paper C studies the synchronization aspect of distributed massive MIMO. We propose a novel, over-the-air synchronization protocol, which we call as BeamSync, to synchronize all the different multi-antenna transmit panels. We also show that beamforming the synchronization signal in the dominant direction of the channel between the panels is optimal and the synchronization performance is significantly better than traditional beamforming techniques. / Efterfrågan på data ökar ständigt och kravet på hastighet har ökat enormt. Framtida trådlösa nätverk behöver stödja tre generiska heterogena tjänster: enhanced mobile broadband (eMBB), ultra-reliable low latency communica-tion (URLLC) och massive machine type communication (mMTC). Massiv MIMO har visat sig vara en lovande teknik för att möta efterfrågan och är nu en integrerad del av 5G-nätverket. För att få höga datahastigheter övervägs extrem förtätning av nätverket genom att distribuera fler basstationer i samma geografiska område. Detta leder till en ökning av intercellinterferens men systemets kapacitet begränsas av intercellinterferensen. För att mildra intercellinterferensen förespråkas distribuerad MIMO. Cellfri massiv MIMO utnyttjar alla fördelar från ultraförtätning, massiv MIMO och distribuerad MIMO-teknik och fungerar utan cellgränser. I denna avhandling studerar vi random access, extrema multiplexerings möjligheter och synkroniseringsaspekter av distribuerad massiv MIMO. I Paper A studeras aktivitetsdetekteringen i grant-free random access för mMTC i cellfria massiv MIMO-nätverk. En algoritm föreslås för aktivitetsdetektering baserad på˚ maximum likelihood-metoden och resultaten visar att den makro-diversitetsvinst som tillhandahålls av den cellfria arkitekturen förbättrar aktivitetsdetekteringsprestandan jämfört med samlokaliserad arkitektur när täckningsområdet är stort. RadioWeaves-teknologi är en ny trädlös infrastruktur utformad för inomhusapplikationer som utnyttjar fördelarna med massiv MIMO och cellfri massiv MIMO. I Paper B studerar vi den extrema multiplexeringsförmågan hos RadioWeaves som kan ge höga datahastigheter med mycket låg effekt. Vi observerar att RadioWeaves-arkitekturen kan rumsligt separera användare mycket bättre än en konventionell samlokaliserad arkitektur, som uppväger förlusterna orsakade av gitterlober och därmed sparar mycket på sändningseffekten. Paper C studerar synkroniseringsaspekten av distribuerad massiv MIMO. Vi föreslår ett nytt, over-the-air synkroniseringsprotokoll, som vi kallar Beam-Sync, för att synkronisera alla olika sändningspaneler med flera antenner. Vi visar också˚ att strålformningen av synkroniseringssignalen i den dominerande riktningen av kanalen mellan panelerna är optimal och synkroniseringsprestandan är betydligt bättre än traditionella strålformningstekniker.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-182601
Date January 2022
CreatorsKunnath Ganesan, Unnikrishnan
PublisherLinköpings universitet, Kommunikationssystem, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Licentiate Thesis, 0280-7971 ; 1923

Page generated in 0.0026 seconds