Return to search

Biosimulation of Vocal Fold Inflammation and Healing

Personalized, pre-emptive and predictive medicine is the capstone of contemporary medical care. The central aim of this dissertation is to address clinical challenges in prescribing personalized therapy to patients with acute phonotrauma. Inflammation and healing, which are innate tissue responses to mechanical stress/ trauma, are regulated by a complex dynamic system. A systems biology approach, which combines empirical, mathematical and computational tools, was taken to study the biological complexity of this dynamic system in vocal fold injury.
Computational agent-based models (ABMs) were developed to quantitatively characterize multiple cellular and molecular interactions around inflammation and healing. The models allowed for tests of various hypothetical effects of motion-based treatments in individuals with acute phonotrauma. A phonotrauma ABM was calibrated and verified with empirical data of a panel of inflammatory mediators, obtained from laryngeal secretions in individuals following experimentally induced phonotrauma and a randomly assigned motion-based treatment. A supplementary ABM of surgically induced vocal fold trauma was developed and subsequently calibrated and verified with empirical data of inflammatory mediators and extracellular matrix substances from rat studies, for the purpose of gaining insight into the &ldquo net effect &rdquo of cellular and molecular responses at the tissue level.
ABM simulations reproduced and predicted trajectories of inflammatory mediators and extracellular matrix as seen in empirical data of phonotrauma and surgical vocal fold trauma. The simulation results illustrated a spectrum of inflammatory responses to phonotrauma, surgical trauma and motion-based treatments. The results suggested that resonant voice exercise may optimize the combination of para- and anti-inflammatory responses to accelerate healing. Moreover, the ABMs suggested that hyaluronan fragments might be an early molecular index of tissue damage that is sensitive to varying stress levels from relatively low phonatory stress to high surgical stress.
We propose that this translational application of biosimulation can be used to quantitatively chart individual healing trajectories, test the effects of different treatment options and most importantly provide new understanding of laryngeal health and healing. By placing biology on a firm mathematical foundation, this line of research has potential to influence the contour of scientific thinking and clinical care of vocal fold injury.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-04132009-144235
Date05 June 2009
CreatorsLi, Nicole Yee-Key
ContributorsYoram Vodovotz, Susan Shaiman, Patricia A. Hebda, John Durrant, Katherine Verdolini
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-04132009-144235/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds