Environmental conditions, biotic interactions, dispersal and history have been suggested to be important processes influencing the spatial distribution of organisms and thus to affect community assembly. Understanding how these processes influence community assembly is important, particularly because community diversity and composition are suggested to be relevant for ecosystem functioning. Moreover, bacteria are strongly contributing to nutrient and carbon cycle. Bacteria are highly abundant and ubiquitous, and thus it is relevant to study how they are assembled. This thesis aims to gain insight on the role of these processes on aquatic bacterial community assembly, diversity and functioning. The studies included in this thesis involve transplant and microcosm experiments performed in the lab as well as manipulation experiments and field surveys in a natural rock pool systems. Bacterial community composition was addressed by analysis of 16S rRNA gene and community functioning by measuring bacterial production, community respiration and the ability to use different carbon substrates. This thesis highlights that species sorting is a very important assembly mechanism for bacterial communities, but also finds that other processes such as dispersal and history contribute to the patterns observed. Dispersal caused rescuing effects compensating for losses of diversity; at the same time it increased the similarity between communities. Moreover, bacteria have shown a high level of functional plasticity when colonizing a new locality. Interestingly, past environmental conditions explained the structure of bacterial communities better than present-day environmental conditions. Disturbances and biotic interactions are also important in the assembly of communities. Disturbance caused temporary shifts in bacterial function and changes in composition, the magnitude of which depended on the intensity and the frequency of the disturbance. However, natural aquatic bacterial communities showed quite high resilience capacities. Competition can shift the proportion of generalists and specialists species whereas predation or trophic interactions have been found to decrease diversity and to modify the importance of stochasticity. Both caused alterations of community functioning. Finally, this thesis shows that the diversity-functioning relationship is context dependent. Further research should be directed to understanding the intensity and direction of changes in composition and how this affects the functionality of bacterial communities
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-207183 |
Date | January 2013 |
Creators | Berga Quintana, Mercè |
Publisher | Uppsala universitet, Limnologi, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1071 |
Page generated in 0.002 seconds