Return to search

Topologias enumeravelmente compactas em grupos abelianos de não torção via ultrafiltros seletivos / Countably compact group topologies on non-torsion abelian groups from selective ultrafilters

Assumindo a existência de $\\mathfrak c$ ultrafiltros seletivos dois a dois incomparáveis (segundo a ordem de Rudin-Keisler) provamos que o grupo abeliano livre de cardinalidade $\\mathfrak c$ admite uma topologia de grupo enumeravelmente compacta com uma seqüência não trivial convergente. Sob as mesmas hipóteses, mostramos que um grupo topológico abeliano quase livre de torção $(G, +, \\tau)$ com $|G| = |\\tau| = \\mathfrak c$ admite uma topologia independente de $\\tau$ que o torna um grupo topológico e caracterizamos algebricamente os grupos abelianos de não torção que têm cardinalidade $\\mathfrak c$ e que admitem uma topologia de grupo enumeravelmente compacta (sem seqüências não triviais convergentes). Provamos, ainda, que o grupo abeliano livre de cardinalidade $\\mathfrak c$ admite uma topologia de grupo que torna seu quadrado enumeravelmente compacto e construímos um semigrupo de Wallace cujo quadrado é, também, enumeravelmente compacto. Por fim, assumindo a existência de $2^{\\mathfrak c}$ ultrafiltros seletivos, garantimos que se um grupo abeliano de não torção e cardinalidade $\\mathfrak c$ admite uma topologia de grupo enumeravelmente compacta, então o mesmo admite $2^{\\mathfrak c}$ topologias de grupo enumeravelmente compactas (duas a duas não homeomorfas). / Assuming the existence of $\\mathfrak c$ pairwise incomparable selective ultrafilters (according to the Rudin-Keisler ordering) we prove that the free abelian group of cardinality $\\mathfrak c$ admits a countably compact group topology that contains a non-trivial convergent sequence. Under the same hypothesis, we show that an abelian almost torsion-free topological group $(G, +, \\tau)$ with $|G| = |\\tau| = \\mathfrak c$ admits a group topology independent of $\\tau$ and we algebraically characterize the non-torsion abelian groups of cardinality $\\mathfrak c$ which admit a countably compact group topology (without non-trivial convergent sequences). We also prove that the free abelian group of cardinality $\\mathfrak c$ admits a group topology that makes its square countably compact and we construct a Wallace\'s semigroup whose square is countably compact. Finally, assuming the existence of $2^$ selective ultrafilters, we ensure that if a non-torsion abelian group of cardinality $\\mathfrak c$ admits a countably compact group topology, then it admits $2^$ (pairwise non-homeomorphic) countably compact group topologies.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23082011-225107
Date11 March 2011
CreatorsAna Carolina Boero
ContributorsArtur Hideyuki Tomita, Ofelia Teresa Alas, Jorge Tulio Mujica Ascui, Plamen Emilov Kochloukov, Irene Castro Pereira
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds