Engineered timber products are becoming increasingly popular in the construction industry due to their attractive aesthetic and sustainability credentials. Cross-laminated timber (CLT) is one such engineered timber product, formed of multiple layers of timber planks glued together with adjacent layers perpendicular to each other. Unlike traditional building materials such as steel and concrete, the timber structural elements can ignite and burn when exposed to fire, and thus this risk must be explicitly addressed during design. Current design guidance focusses on the structural response of engineered timber, with the flammability risk typically addressed by encapsulation of any structural timber elements with the intention of preventing their involvement in a fire. Exposed structural timber elements may act as an additional fuel load, and this risk must be adequately quantified to satisfy the intent of the building regulations in that the structure does not continue burning. This can be achieved through timber’s natural capacity to auto-extinguish when the external heat source is removed or sufficiently reduced. To address these issues, a fundamental understanding of auto-extinction and the conditions necessary to achieve it in real fire scenarios is needed. Bench-scale flammability studies were undertaken in the Fire Propagation Apparatus to explore the conditions under which auto-extinction will occur. Critical conditions were determined experimentally as a mass loss rate of 3.48 ± 0.31 g/m2s, or an incident heat flux of ~30 kW/m2. Mass loss rate was identified as the better criterion, as critical heat flux was shown by comparison with literature data to be heavily dependent on apparatus. Subsequently, full-scale compartment fire experiments with exposed timber surfaces were performed to determine if auto-extinction could be achieved in real fire scenarios. It was demonstrated that auto-extinction could be achieved in a compartment fire scenario, but only if significant delamination of the engineered timber product could be prevented. A full-scale compartment fire experiment with an exposed back wall and ceiling achieved auto-extinction after around 21 minutes, at which point no significant delamination of the first lamella had been observed. Experiments with an exposed back and side wall, and experiments with an exposed back wall, side wall, and ceiling underwent sustained burning due to repeated delamination, and an increased quantity of exposed timber respectively. Firepoint theory was used to predict the mass loss rate as a function of external heat flux and heat losses, and was successfully applied to the bench-scale experiments. This approach was then extended to the full-scale compartment fire experiment which achieved auto-extinction. A simplified approach based on experimentally obtained internal temperature fields was able to predict auto-extinction if delamination had not occurred – predicting an extinction time of 20-21 minutes. This demonstrates that the critical mass loss rate of 3.48 ± 0.31 g/m2s determined from bench-scale experiments was valid for application to full-scale compartment fire experiments. This was further explored through a series of reduced-scale compartment fire experiments, demonstrating that auto-extinction can only reliably be achieved if burnout of the compartment fuel load is achieved before significant delamination of the outer lamella takes place. The quantification of the auto-extinction phenomena and their applicability to full-scale compartment fires explored herein thus allows greater understanding of the effects of exposed timber surfaces on compartment fire dynamics.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743756 |
Date | January 2018 |
Creators | Bartlett, Alastair Ian |
Contributors | Hadden, Rory ; Bisby, Luke |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/31052 |
Page generated in 0.0022 seconds