nÃo hà / Nesta tese aborda-se o problema de identificaÃÃo de sistemas dinÃmicos sobre a Ãtica dos modelos locais, em que o espaÃo de entrada à particionado em regiÃes de operaÃÃo menores sobre as quais sÃo construÃdos modelos de menor complexidade (em geral, lineares). Este tipo de modelo à uma alternativa aos chamados modelos globais em que a dinÃmica do sistema Ã
identificada usando-se uma Ãnica estrutura (em geral, nÃo-linear) que cobre todo o espaÃo de entrada. Assim, o tema alvo desta tese à o projeto de modelos lineares locais cujo espaÃo de entrada à particionado por meio do uso de algoritmos de quantizaÃÃo vetorial, principalmente aqueles baseados em redes neurais competitivas. Para este fim, sÃo propostos trÃs novos modelos lineares locais baseados na rede SOM (self-organizing map), que sÃo avaliados na tarefa de identificaÃÃo do modelo inverso de quatro sistemas dinÃmicos comumente usados na literatura em benchmarks de desempenhos. Os modelos propostos sÃo tambÃm comparados com modelos globais baseados nas redes MLP (multilayer perceptron) e ELM (extreme learning machines), bem como com outros modelos
lineares locais, tais como o modelo fuzzy Takagi-Sugeno e o modelo neural LLM (local linear mapping). Um amplo estudo à realizado visando comparar os desempenhos de todos os modelos supracitados segundo trÃs critÃrios de avaliaÃÃo, a saber: (i) erro mÃdio quadrÃtico normalizado, (ii) anÃlise dos resÃduos, e (iii) teste estatÃstico de Kolmogorov-Smirnov. De particular interesse para esta tese, à a avaliaÃÃo da robustez dos modelos locais propostos com relaÃÃo ao algoritmo de quantizaÃÃo vetorial usado no treinamento do modelo. Os resultados obtidos indicam que os desempenhos dos modelos locais propostos sÃo superiores aos dos modelos globais baseados na rede MLP e equivalentes aos modelos globais baseados na rede ELM. / In this thesis the problem of nonlinear system
identification is approached from the viewpoint of local models. The input space is partitioned into smaller operational regions with lower complexity models (usually linear) built for each one. This type of model is an alternative to global models, for which the system dynamics is identified using a single structure (usually nonlinear ones) that covers the whole input space. The aim of this thesis is to design of local linear models whose input space is partitioned by means of vector quantization algorithms, special those based on competitive learning
neural networks. For this purpose, three novel local linear modeling methods based on the SOM (self-organizing map) are introduced and evaluated on the identification of the
inverse model of four dynamical systems commonly used in the literature for performance benchmarking. The proposed models are also compared with global models based on the MLP (multilayer perceptron) and ELM (extreme learning machines), as well as with alternative local linear models, such as the Takagi-Sugeno fuzzy model and the LLM(local linear mapping) neural model. A comprehensive study is carried out to compare the performances of all the aforementioned models according to three evaluation criteria, namely: (i) normalized mean squared error, (ii) residual analysis, and (iii) Kolmogorov-Smirnov test. Of particular interest to this thesis is the evaluation of the robustness of the proposed local models with respect to the vector quantization algorithm used to train the model. The obtained results indicates that the performance of the proposed local models are superior to those achieved by the MLP-based global models and equivalent to those achieved by ELM-based global models.
Identifer | oai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:5215 |
Date | 27 February 2012 |
Creators | Luis Gustavo Mota Souza |
Contributors | Guilherme de Alencar Barreto |
Publisher | Universidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em Engenharia de TeleinformÃtica, UFC, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds