Return to search

Rezonanční srážky elektronů s molekulami / Rezonanční srážky elektronů s molekulami

In the present work we study different approaches for solving the nuclear dy- namics of resonant electron molecule collisions. Namely, we review two methods addressing this phenomenon which are a local complex potential (LCP) approxi- mation and a nonlocal resonance model (NRM). We briefly discuss a numerical implementation of these methods. We show how to derive model parameters for both of them from fixed-nuclei scattering calculations and we implement them in the time independent picture of quantum mechanics. We compare their vibrational excitation cross sections for the diatomic molecule CO. Then we generalize the non- local resonance model for systems with more nuclear degrees of freedom. Output of our work is a computer code producing the vibrational excitation cross sections for systems with two degrees of freedom. We aim to use this code for studying a threshold behavior of the low-energy electron collisions with the CO2 molecule and therefore we review a current state of understanding for this phenomenon. Mea- nwhile we test the functionality of the code by comparing results with those of the LCP approximation on a simple 2D model system.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:305155
Date January 2012
CreatorsFormánek, Martin
ContributorsHoufek, Karel, Kolorenč, Přemysl
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0023 seconds