Tesis por compendio / [EN] The increase in energy needs, particularly in terms of environmental protection, has greatly
stimulated research in the field of photovoltaic conversion in recent years. Solar radiation
provides an excellent resource for producing clean and sustainable electricity without toxic
pollution or global warming, but in terms of high demand for energy for electricity production
as well as the toxicity or scarcity of components constitute the solar cells, this solar
transformation technology is still somewhat limited. Because these parameters constitute the
main environmental concerns surrounding the photovoltaic industry. The compound
Cu2ZnSnS4 (CZTS) can be considered as one of the most promising absorbent layer materials
for low cost thin film solar cells. The abundance and non-toxicity of the constituent elements
this promising material is the subject of this work. Obviously, this leads us to think about
optimizing the other parameters influencing the formation of thin layers by the
electrodeposition method. An electrochemical deposition technique which offers an
advantageous alternative from an economic point of view and especially from the possibility
of using large surface substrates.
The initial focus was on determining the optimal parameters for the CZTS quaternary thin film
development process. The electrodeposition is implemented by the technique of polarization
of a potentiostatic electrode. Because this technique is based on the deposition potential of each
substance constituting the electrolytic bath, a study has been conducted on the effect of the
factors of complexity in order to assimilate these reduction potentials. Then, the annealing
process which is a necessary step in the formation of absorbent layers in CZTS was mastered,
under the influence of the complexity factor so as to reduce the annealing temperature while
preserving the properties of the material. High quality kesterite films with a compact
morphology and a well-defined crystal structure at low temperatures were synthesized using
Na2SO4 as the complexing agent. Subsequently, the CZTS kesterite films were prepared on
different conductive substrates (ITO, FTO and Mo / glass) due to specifying the effect of back
contact. The best behavior is a specific combination of the parameters studied. This work made
it possible in particular to master the composition of the films deposited, the annealing process
as well as the necessary characterization techniques. Finally, our strategy implements a digital
simulation of the CZTS solar cell using the SCAPS-1D software. After the experimental
visualization of the thin layers of CZTS on different conductive substrates, modeling by the SCAPS-1D software of the CZTS solar cell device showed that the back-contact Mo mounts
the best performances. / [ES] El aumento de las necesidades energéticas, particularmente en términos de protección del
medio ambiente, ha estimulado en gran medida la investigación en el campo de la conversión
fotovoltaica en los últimos años. La radiación solar proporciona un recurso excelente para
producir electricidad limpia y sostenible sin contaminación tóxica o calentamiento global, pero
en términos de alta demanda de energía eléctrica, así como la toxicidad o escasez de
componentes que constituyen las células solares, esta tecnología de transformación solar
todavía es algo limitada. En consecuencia estos parámetros constituyen las principales
preocupaciones ambientales que rodean a la industria fotovoltaica.
El compuesto Cu2ZnSnS4 (CZTS) puede considerarse como uno de los materiales absorbentes
más prometedores para las células solares de película delgada de bajo costo. La abundancia y
la no toxicidad de los elementos constitutivos de este prometedor material es el tema de este
trabajo. Este objetivo nos ha llevado a pensar en optimizar los parámetros que influyen en la
formación de capas delgadas por métodos electroquímicos. La técnica de deposición
electroquímica o electrodeposición catódica ofrece una alternativa ventajosa desde un punto de
vista económico y especialmente ofrece la posibilidad de utilizar sustratos de gran superficie.
El enfoque inicial fue determinar los parámetros óptimos para el proceso de desarrollo de
película delgada cuaternaria de CZTS. La electrodeposición se implementó mediante la técnica
de polarización de un electrodo por el método potenciostático, o sea a potencial constante.
Debido a que esta técnica se basa en el potencial de deposición de cada sustancia que constituye
el baño electrolítico, se ha llevado a cabo un estudio sobre el efecto de los factores de
complejidad para acercar estos potenciales de reducción. Una vez fueron depositadas las capas,
se continuó con el estudio del proceso de recocido, que es un paso necesario en la formación
de capas absorbentes de CZTS bajo la influencia del factor de complejidad, debido a que
conviene reducir la temperatura de recocido mientras se intenta conservan las propiedades del
material.
Se sintetizaron películas de kesterita de alta calidad con una morfología compacta y una
estructura cristalina bien definida a bajas temperaturas usando Na2SO4 como agente
acomplejante. Posteriormente, las películas de kesterita CZTS se prepararon en diferentes
sustratos conductores (ITO, FTO y Mo / vidrio) para estudiar el efecto del contacto posterior.
Comprobamos que el mejor comportamiento se produce para una combinación específica de
los parámetros estudiados.
En particular este trabajo nos ha permitido controlar la composición de las películas
depositadas, dominar el proceso de recocido y usar las técnicas de caracterización necesarias
para evaluar la composicion, calidad y propiedades optoelectrónicas de las capas de CZTS
sintetizadas.
Finalmente, nuestra estrategia implementa una simulación digital de la célula solar CZTS
utilizando el software SCAPS-1D. Después de la visualización experimental de las capas
delgadas de CZTS en diferentes sustratos conductores, el modelado por el software SCAPS1D del dispositivo de células solares CZTS demostró que el contacto trasero Mo ofrece los
mejores rendimientos. / [FR] L'augmentation des besoins énergétiques, notamment en matière de protection de l'environnement, a fortement stimulé la recherche dans le domaine de la conversion photovoltaïque ces dernières années. Le rayonnement solaire fournit une excellente ressource pour produire de l'électricité propre et durable sans pollution toxique ni réchauffement climatique, mais en termes de forte demande d'énergie pour la production de l’électricité ainsi que la toxicité ou la rareté des composants constituent les cellules solaires, cette technologie de transformation solaire est encore un peu limitée. En raison que ces paramètres constituent les principales préoccupations environnementales entourant l'industrie photovoltaïque. Le composé C2ZnSnS4 (CZTS) peut être considéré comme l'un des matériaux de couche absorbante les plus prometteurs pour les cellules solaires en couches minces à faible coût. L’abondance et la non-toxicité des éléments constitutifs ce matériau prometteur fait l'objet de ce travail. De toute évidence, cela nous amène à réfléchir pour optimiser les autres paramètres influençant la formation de couches minces par la méthode d'électrodéposition. Une technique de dépôt par voie électrochimique qui offre une alternative avantageuse du point de vue économique et surtout de la possibilité d’utiliser des substrats de grande surface. Initialement, l'accent était mis sur la détermination des paramètres optimaux pour le processus d’élaboration de couches minces du quaternaire CZTS. L'électrodéposition est mise en œuvre par la technique de polarisation d'une électrode potentiostatique. En raison, que cette technique reposant sur le potentiel de dépôt de chaque substance constituant le bain électrolytique, une étude a été menée sur l'effet des facteurs de complexité afin de rapprocher ces potentiels de réduction. Ensuite, Le processus de recuit qui est une étape nécessaire dans la formation de couches absorbantes en CZTS a été maîtriser, sous l'influence du facteur de complexité en raison de réduire la température de recuit tout en conservant les propriétés du matériau. Des films de kësterite de haute qualité avec une morphologie compacte et une structure cristalline bien définie à basse température ont été synthétisés en utilisant Na2SO4 comme agent complexant. Par la suite, les films de kestérite CZTS ont été préparés sur différents substrats conducteurs (ITO, FTO et Mo / verre) en raison de spécifier l'effet du contact arrière. Le meilleur comportement est une combinaison spécifique des paramètres étudiés. Ces travaux ont permis notamment de maîtriser la composition des films déposés, le processus de recuit ainsi que les techniques de caractérisation nécessaire. Finalement, notre stratégie met en œuvre une simulation numérique de la cellule solaire CZTS à l'aide du logiciel SCAPS − 1D. Après la visualisation expérimentale des couches minces de Czts sur différent substrats conducteur, une modélisation par le logiciel SCAPS-1D du dispositif CZTS cellules solaires a montré que le Mo contact arrière monte les meilleures performances. / [CA] L'augment de les necessitats energètiques, particularment en termes de protecció de l'entorn,
ha estimulat en gran mesura la investigació en el camp de la conversió fotovoltaica en els últims
anys. La radiació solar proporciona un recurs excel·lent per produir electricitat neta i sostenible
sense contaminació tòxica ni escalfament global, però en termes de l'alta demanda d'energia
elèctrica, així com la toxicitat o escassetat de components que constitueixen les cèl·lules solars,
aquesta tecnologia de transformació solar encara trova barreres limitadores. En conseqüència
aquests paràmetres constitueixen les principals preocupacions ambientals que envolten a la
indústria fotovoltaica.
El compost Cu2ZnSnS4 (CZTS) pot considerar-se com un dels materials absorbents més
prometedors per a les cèl·lules solars de pel·lícula prima i de baix cost. L'abundància i la no
toxicitat dels elements constitutius d'aquest prometedor material és el tema d'aquest treball.
Aquest objectiu ens ha portat a treballar en l’optimització dels paràmetres que influeixen en la
formació de capes primes de CZTS per mètodes electroquímics. La tècnica de deposició
electroquímica o electrodeposició catòdica ofereix una alternativa avantatjosa des d'un punt de
vista econòmic i especialment ofereix la possibilitat d'utilitzar substrats de gran superfície.
L'enfocament inicial va ser determinar els paràmetres òptims per al procés de desenvolupament
d’una pel·lícula prima quaternària de CZTS. La electrodeposició es va implementar mitjançant
la tècnica de polarització d'un elèctrode pel mètode potenciostàtic, o siga a potencial constant.
Aquesta tècnica es basa en el potencial de deposició de cada substància que constitueix el bany
electrolític es diferent i per tant s'ha dut a terme un estudi sobre l'efecte dels factors de
complexitat per tal apropar aquests potencials de reducció de tots els components involucrats.
Un cop van ser dipositades les capes, es va continuar amb l’estudi del procés de recuit, que és
un pas necessari en la formació de capes absorbents de CZTS sota la influència del factor de
complexitat, a causa de la reducció de la temperatura de recuit mentre es conserven les
propietats de l'material.
Es van sintetitzar pel·lícules de kesterita d'alta qualitat amb una morfologia compacta i una
estructura cristal·lina ben definida a baixes temperatures usant Na2SO4 com a agent
acomplexant. Posteriorment, les pel·lícules de kesterita CZTS es van preparar en diferents
substrats conductors (ITO, FTO i Mo / vidre) per estudiar l'efecte del contacte posterior sobre les capes fines. Obtinguerem que el millor comportament és una combinació específica dels
paràmetres estudiats.
En particular aquest treball ens ha permès controlar la composició de les pel·lícules dipositades,
controlar el procés de recuit i usar les tècniques de caracterització necessàries per avaluar la
composició, qualitat i propietats optoelectròniques de les capes de CZTS depositades.
Finalment, en la nostra estratègia es va implementar una simulació numérica d’una cèl·lula
solar de CZTS utilitzant el programari SCAPS-1D. Després de la visualització experimental de
les capes primes de CZTS en diferents substrats conductors, el modelatge pel programari
SCAPS-1D del dispositiu fotovoltaic de CZTS va demostrar que el contacte posterior de Mo
és el que ofereix el millor rendiment. / I would like to thank the Moroccan Center for Scientific and Technical Research and the
Doctoral school of the Polytechnic University of Valencia for the financial assistance they
have allocated.
I also extend my sincere thanks to the UPV Electron Microscopy Service and to Mr Ángel
Sans Tresserras for their help to learn how to work with characterization techniques. / Toura, H. (2020). Elaboration and characterization by electrochemical technique CZTS thin layers for photovoltaic application [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/154334 / Compendio
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/154334 |
Date | 06 November 2020 |
Creators | Toura, Hanae |
Contributors | Ebn Touhami, Mohamed, Marí Soucase, Bernabé, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | French |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds