Return to search

Architecture and Applications of a Geovisual Analytics Framework

The large and ever-increasing amounts of multi-dimensional, multivariate, multi-source, spatio-temporal data represent a major challenge for the future. The need to analyse and make decisions based on these data streams, often in time-critical situations, demands integrated, automatic and sophisticated interactive tools that aid the user to manage, process, visualize and interact with large data spaces. The rise of `Web 2.0', which is undisputedly linked with developments such as blogs, wikis and social networking, and the internet usage explosion in the last decade represent another challenge for adapting these tools to the Internet to reach a broader user community. In this context, the research presented in this thesis introduces an effective web-enabled geovisual analytics framework implemented, applied and verified in Adobe Flash ActionScript and HTML5/JavaScript. It has been developed based on the principles behind Visual Analytics and designed to significantly reduce the time and effort needed to develop customized web-enabled applications for geovisual analytics tasks and to bring the benefits of visual analytics to the public. The framework has been developed based on a component architecture and includes a wide range of visualization techniques enhanced with various interaction techniques and interactive features to support better data exploration and analysis. The importance of multiple coordinated and linked views is emphasized and a number of effective techniques for linking views are introduced. Research has so far focused more on tools that explore and present data while tools that support capturing and sharing gained insight have not received the same attention. Therefore, this is one of the focuses of the research presented in this thesis. A snapshot technique is introduced, which supports capturing discoveries made during the exploratory data analysis process and can be used for sharing gained knowledge. The thesis also presents a number of applications developed to verify the usability and the overall performance of the framework for the visualization, exploration and analysis of data in different domains. Four application scenarios are presented introducing (1) the synergies among information visualization methods, geovisualization methods and volume data visualization methods for the exploration and correlation of spatio-temporal ocean data, (2) effective techniques for the visualization, exploration and analysis of self-organizing network data, (3) effective flow visualization techniques applied to the analysis of time-varying spatial interaction data such as migration data, commuting data and trade flow data, and (4) effective techniques for the visualization, exploration and analysis of flood data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-91679
Date January 2013
CreatorsHo, Quan
PublisherLinköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska högskolan, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1511

Page generated in 0.012 seconds