Plusieurs milliards de dollars sont investis chaque année pour la recherche de molécules bioactives contre diverses maladies. De nos jours, la majorité de ces composés sont synthétisés par l’homme et se conforme à la règle de 5 de Lipinski qui analyse les propriétés physicochimiques d’une molécule bioactive et son potentiel à atteindre une cible thérapeutique. Or, plusieurs composés synthétisés sont extrêmement actifs, mais ne respectent pas la règle de Lipinski. L’aspect limitant pour plusieurs de ces molécules est leur faible caractère hydrophile qui diminue la solubilité physiologique. Dans la littérature, plusieurs méthodes ont été publiées pour améliorer cette caractéristique. Un exemple est la conjugaison de la molécule hydrophobe sur des macromolécules telles des polymères, des polysaccharides ou des peptides. En tenant compte de l’expertise de notre laboratoire, nous avons utilisé le dendrimère PEOT, un polymère monodisperse hyperbranché, comme plateforme pour améliorer les propriétés physicochimiques d’un composé bioactif, l’aminostéroïde AH-38, sur diverses lignées cancéreuses. Pour conjuguer l’AH-38 sur le PEOT, il a été nécessaire d’ajouter une méthode d’ancrage par la préparation d’une molécule d’espacement. L’idée initiale était d’utiliser un espaceur qui permettrait de lier de manière réversible l’aminostéroïde bioactif pour être libéré à la cible thérapeutique. La présence intrinsèque d’un groupement fonctionnel hydrophile dans la structure de la molécule d’espacement serait idéale pour une fonctionnalisation complète des terminaisons. De plus, la molécule d’espacement devrait pouvoir se conjuguer en périphérie du dendrimère par cycloaddition 1,3-dipolaire de Huisgen sans avoir recours à un catalyseur de cuivre. Plusieurs tentatives ont été effectuées sans succès pour fonctionnaliser une molécule d’espacement correspondant à ces critères. Finalement, nous avons choisi de ne pas avoir de fonction hydrophile dans l’espaceur et la conjugaison au dendrimère fait intervenir un catalyseur de cuivre. Dans ce mémoire de maîtrise, les avantages de la nanomédecine, le cheminement de pensée et les travaux effectués pour arriver aux molécules cibles sont présentés. / Each year, billions of dollars are invested in research to treat different illnesses using bioactive molecules. Nowadays, most drugs are synthesized by men; they usually comply with the Lipinski rule of 5 which analyses their physicochemical properties and their potential reach the biological target. However, there are still numerous extremely active compounds, but they do not act in accordance to the Lipinski’s rule. Many of those compounds are limited by their low hydrophilicity which reduces their physiological solubility. In the literature, many strategies have been published on ways to enhance this property. For example, a poorly water-soluble drug may be grafted onto a macromolecule such as a polymer, a polysaccharide or a peptide. Considering our laboratory area of expertise, we used the PEOT dendrimer -- a monodisperse hyperbranched polymer -- as carrier to enhance the physicochemical properties of the aminosteroid AH-38, a bioactive compound over multiple cancer cell lines. To graft the AH-38 onto the PEOT, a linker molecule must be used. In our preliminary research, we wanted to choose a structure that could link reversibly the bioactive aminosteroid to be released at the therapeutic target. In the linker’s structure, a hydrophilic functional group should be present, it would be ideal to completely functionalize the dendrimer’s terminis. Also, the linker should be able to graft onto the dendrimère using the Huisgen 1,3-dipolar cycloaddition without any copper catalyst. Many attempts were made to synthesize a linker with following these criteria, but they all failed. Consequently, we opted for a linker that does not have a hydrophilic functional group and uses a copper catalyst to graft onto the dendrimer. In this master’s report, nanomedecine’s advantages, the entire thinking process and experiments that were performed in order to obtain the target’s molecules are presented.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/29955 |
Date | 06 June 2018 |
Creators | Darveau, Patrick |
Contributors | Poirier, Donald, Morin, Jean-François |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (xiii, 143 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0023 seconds