Ces dernières années, les molécules organiques semi-conductrices (MOS) ont attiré un intérêt considérable en raison de leurs propriétés électroniques uniques, ouvrant la voie à des applications dans divers domaines tels que les diodes électroluminescentes (DEL), les transistors à effet de champ (FET) et les cellules solaires (SC). Ces propriétés intrigantes résultent des systèmes d'électrons π-conjugués, qui permettent la délocalisation des électrons sur des structures moléculaires étendues. La synthèse des MOS implique la conception et la préparation de molécules organiques dotées de propriétés électroniques spécifiques. Diverses stratégies de synthèse ont été employées pour moduler les structures moléculaires et optimiser leurs propriétés. La capacité à moduler la largeur de bande interdite et la structure électronique des MOS a facilité le développement de dispositifs électroniques avancés. Dans cette étude, nous explorons des méthodes de fermeture bien établies dans des systèmes non-benzénoïdes, reconnus pour leur bande interdite réduite. Cette approche vise à faciliter une exploration approfondie des propriétés de ces systèmes complexes, dans le but de concevoir de nouvelles molécules organiques semi-conductrices. Tout d'abord, la connectivité 2,6 de l'azulène est reconnue pour conférer les meilleures propriétés de conductivité et de délocalisation des électrons. Une série de molécules exemples a été synthétisée afin d'explorer diverses réactions de cyclisation aux positions 1 et 5 de l'azulène, en vue d'étendre sa conjugaison. Enfin, le meilleur candidat a été sélectionné pour la synthèse de nouveaux hydrocarbures aromatiques polycycliques (HAPs) et l'étude approfondie de leurs propriétés. Cette même stratégie a été employée pour parvenir à la synthèse de macromolécules. La formation de nanorubans non-benzénoïdes en solution, présentant une connectivité 2,6 et une alternance d'un motif azulène-anthracène fusionné, a été étudiée. La conductivité du matériau a été explorée, atteignant jusqu'à 1.5 x10⁻³ S·cm⁻¹ pour le film le plus mince (0.3 μm). Enfin, une nouvelle méthode simple et efficace a été élaborée pour la synthèse d'un des isomères d'azulénoazulène, molécule inexplorée depuis les années 1970. Chaque composé d'intérêt a été obtenu en un nombre réduit d'étapes de synthèse, avec un rendement amélioré, et peut être aisément fusionné avec d'autres briques aromatiques. Cette catégorie de composés, jusqu'alors non documentée, présente une absorption significative dans la région UV-visible, ainsi qu'un comportement de couche ouverte, un processus de dimérisation/photodissociation et une bonne mobilité de charge dans les dispositifs FET. / In recent years, organic semiconducting molecules (OSMs) have garnered considerable interest due to their unique electronic properties, paving the way for promising applications in various fields such as light-emitting diodes (LEDs), field-effect transistors (FETs), and solar cells. These intriguing properties arise from π-conjugated electron systems, enabling electron delocalization over extended molecular structures. The synthesis of OSMs involves the design and construction of organic molecules with specific electronic properties. Various synthesis strategies have been employed to tailor molecular structures and optimize their properties. The ability to modulate the bandgap and electronic structure of OSMs has facilitated the development of advanced electronic devices. In this study, we explore well-established ring-closure methods for non-benzenoid systems, which are known for their reduced bandgap. This approach aims to facilitate a thorough exploration of the properties of these complex systems, with the goal of designing new organic semiconducting molecules for the formation of polycyclic aromatic hydrocarbons (PAHs) with a reduced bandgap. Firstly, the 2,6-connectivity of azulene is known for conferring the best conductivity and electron delocalization properties. A series of example molecules has been synthesized to explore various cyclization reactions at the 1 and 5 positions of azulene, intending to extend its conjugation. Finally, the best candidate has been selected for the synthesis of new PAHs and the in-depth study of their properties. The same strategy has been employed to achieve the synthesis of macromolecules. The formation of non-benzenoid nanoribbons in solution, featuring 2,6-connectivity and an alternating azulene-anthracene fused motif, has been studied. The material's conductivity has been explored, reaching up to 1.5 x10⁻³ S·cm⁻¹ for the thinnest film (0.3 μm), Finally, a new short and efficient method is developed for the synthesis of one of the isomers of azulenoazulene, a molecule unexplored since the 1970s. Each compound of interest is obtained in a reduced number of synthesis steps, with improved yield, and can be easily fused with other aromatic units. This previously undocumented category of compounds exhibits significant absorption in the UV-visible region, open-layer behavior, dimerization/photodissociation processes, and good charge mobility in FET devices.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/142865 |
Date | 06 May 2024 |
Creators | Mathey, Pierre |
Contributors | Morin, Jean-François |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxvi, 222 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0025 seconds