Two dimensional and quasi-three dimensional, linear elastic finite element models for the prediction of crack growth characteristics, including crack growth direction, in laminated composite materials are presented. Mixed-mode crack growth in isotropic materials, unidirectional and laminated composites is considered.
The modified crack closure method is used to predict the applied load level for crack extension and two new failure theories, modifications of the point stress and the Hashin failure criteria, are proposed to predict the direction of crack extension in composites. Comparisons are made with the Tsai-Wu failure criterion and the Sih strain energy density criterion as well as with experimental results. It is shown that the modified versions of point stress and Hashin criteria compare well with experiment. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/87211 |
Date | January 1982 |
Creators | Buczek, Matthew B. |
Contributors | Engineering Mechanics |
Publisher | Virginia Polytechnic Institute and State University |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis, Text |
Format | viii, 132, [1] leaves, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 9379093 |
Page generated in 0.0023 seconds