No / In steel¿concrete composite beams, the longitudinal shear force is transferred across the steel flange/concrete slab interface by the mechanical action of the shear connectors. The ability of the shear connectors to transfer these longitudinal shear forces depends on their strength, and also on the resistance of the concrete slab against longitudinal cracking induced by the high concentration of shear force. Most of the research in composite construction has concentrated on the more traditional reinforced concrete and metal deck construction, and little information is given on shear capacity of the headed studs in precast hollowcore slabs. In this paper, a standard push test procedure for use with composite beams with precast hollowcore slabs is proposed. Seven exploratory push tests were carried out on headed studs in solid RC slabs to validate the testing procedures, and the results showed that the new test is compatible with the results specified in the codes of practice for solid RC slabs. Once a standard procedure is established, 72 full-scale push tests on headed studs in hollowcore slabs were performed to determine the capacities of the headed stud connectors in precast hollowcore slabs and the results of the experimental study are analysed and findings on the effect of all the parameters on connectors¿ strength and ductility are presented. Newly proposed design equations for calculating the shear connectors¿ capacity for this form of composite construction are also be given.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/5795 |
Date | January 2007 |
Creators | Lam, Dennis |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.002 seconds