With the need to improve corrosion resistance in columns and piles, the innovative idea of Centrally Prestressed Fiber Reinforced Concrete (CPFRC) columns is a promising solution. The first step is to compare if the compressive strength of any mix is affected by the size, geometry, or even the inclusion of polyolefin fibers in a specimen. The results showed that the cylinder size of 4 in. x 8 in., which is the most common size used by the testing labs, has the highest compressive strength. There was no sign on compressive strength improvement with the use of polyolefin fibers, except for reduction in cracking size and concrete spalling. The second step compared the ultimate strength, ductility characteristics and failure mode of CPFRC columns to conventional columns. CPFRC showed adequate axial and flexural resistance, in addition to ductile behavior similar to regular reinforced concrete columns. / by Daniel A. Grijalba. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3776 |
Contributors | Grijalba, Daniel A., College of Engineering and Computer Science, Department of Civil, Environmental and Geomatics Engineering |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | xiv, 92 p. : ill. (some col.), electronic |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds