Modern clinical diagnoses and treatments have been increasingly reliant on medical imaging techniques. In return, medical images are required to provide more accurate and detailed information than ever. Aside from the evolution of hardware and software, multimodal imaging techniques offer a promising solution to produce higher quality images by fusing medical images from different modalities. This strategy utilizes more structural and/or functional image information, thereby allowing clinical results to be more comprehensive and better interpreted. Since their inception, multimodal imaging techniques have received a great deal of attention for achieving enhanced imaging performance. In this work, a novel joint reconstruction framework using sparse computed tomography (CT) and magnetic resonance imaging (MRI) data is developed and evaluated. The method proposed in this study is part of the planned joint CT-MRI system which assembles CT and MRI subsystems into a single entity. The CT and MRI images are synchronously acquired and registered from the hybrid CT-MRI platform. However, since their image data are highly undersampled, analytical methods, such as filtered backprojection, are unable to generate images of sufficient quality. To overcome this drawback, we resort to compressed sensing techniques, which employ sparse priors that result from an application of L₁-norm minimization. To utilize multimodal information, a projection distance is introduced and is tuned to tailor the texture and pattern of final images. Specifically CT and MRI images are alternately reconstructed using the updated multimodal results that are calculated at the latest step of the iterative optimization algorithm. This method exploits the structural similarities shared by the CT and MRI images to achieve better reconstruction quality. The improved performance of the proposed approach is demonstrated using a pair of undersampled CT-MRI body images and a pair of undersampled CT-MRI head images. These images are tested using joint reconstruction, analytical reconstruction, and independent reconstruction without using multimodal imaging information. Results show that the proposed method improves about 5dB in signal-to-noise ratio (SNR) and nearly 10% in structural similarity measurements compared to independent reconstruction methods. It offers a similar quality as fully sampled analytical reconstruction, yet requires as few as 25 projections for CT and a 30% sampling rate for MRI. It is concluded that structural similarities and correlations residing in images from different modalities are useful to mutually promote the quality of image reconstruction. / Ph. D. / Medical imaging techniques play a central role in modern clinical diagnoses and treatments. Consequently, there is a constant demand to increase the overall quality of medical images. Since their inception, multimodal imaging techniques have received a great deal of attention for achieving enhanced imaging performance. Multimodal imaging techniques can provide more detailed diagnostic information by fusing medical images from different imaging modalities, thereby allowing clinical results to be more comprehensive to improve clinical interpretation.
A new form of multimodal imaging technique, which combines the imaging procedures of computed tomography (CT) and magnetic resonance imaging (MRI), is known as the “omnitomography.” Both computed tomography and magnetic resonance imaging are the most commonly used medical imaging techniques today and their intrinsic properties are complementary. For example, computed tomography performs well for bones whereas the magnetic resonance imaging excels at contrasting soft tissues. Therefore, a multimodal imaging system built upon the fusion of these two modalities can potentially bring much more information to improve clinical diagnoses. However, the planned omni-tomography systems face enormous challenges, such as the limited ability to perform image reconstruction due to mechanical and hardware restrictions that result in significant undersampling of the raw data.
Image reconstruction is a procedure required by both computed tomography and magnetic resonance imaging to convert raw data into final images. A general condition required to produce a decent quality of an image is that the number of samples of raw data must be sufficient and abundant. Therefore, undersampling on the omni-tomography system can cause significant degradation of the image quality or artifacts after image reconstruction. To overcome this drawback, we resort to compressed sensing techniques, which exploit the sparsity of the medical images, to perform iterative based image reconstruction for both computed tomography and magnetic resonance imaging. The sparsity of the images is found by applying sparse transform such as discrete gradient transform or wavelet transform in the image domain. With the sparsity and undersampled raw data, an iterative algorithm can largely compensate for the data inadequacy problem and it can reconstruct the final images from the undersampled raw data with minimal loss of quality.
In addition, a novel “projection distance” is created to perform a joint reconstruction which further promotes the quality of the reconstructed images. Specifically, the projection distance exploits the structural similarities shared between the image of computed tomography and magnetic resonance imaging such that the insufficiency of raw data caused by undersampling is further accounted for. The improved performance of the proposed approach is demonstrated using a pair of undersampled body images and a pair of undersampled head images, each of which consists of an image of computed tomography and its magnetic resonance imaging counterpart. These images are tested using the proposed joint reconstruction method in this work, the conventional reconstructions such as filtered backprojection and Fourier transform, and reconstruction strategy without using multimodal imaging information (independent reconstruction). The results from this work show that the proposed method addressed these challenges by significantly improving the image quality from highly undersampled raw data. In particular, it improves about 5dB in signal-to-noise ratio and nearly 10% in structural similarity measurements compared to other methods. It achieves similar image quality by using less than 5% of the X-ray dose for computed tomography and 30% sampling rate for magnetic resonance imaging. It is concluded that, by using compressed sensing techniques and exploiting structural similarities, the planned joint computed tomography and magnetic resonance imaging system can perform imaging outstanding tasks with highly undersampled raw data.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/86177 |
Date | 28 November 2018 |
Creators | Cui, Xuelin |
Contributors | Electrical Engineering, Mili, Lamine M., Beex, Aloysius A., Abbott, A. Lynn, Yu, Hengyong, Cao, Guohua |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0032 seconds