QuantitativeTraitLocus (QTL) is a statistical method used to restrict genomic regions contributing to specific phenotypes. To further localize genes in such regions a web tool called “Candidate Gene Capture” (CGC) was developed by Andersson et al. (2005). The CGC tool was based on the textual description of genes defined in the human phenotype database OMIM. Even though the CGC tool works well, the tool was limited by a number of inconsistencies in the underlying database structure, static web pages and some gene descriptions without properly defined function in the OMIM database. Hence, in this work the CGC tool was improved by redesigning its database structure, adding dynamic web pages and improving the prediction of unknown gene function by using exon analysis. The changes in database structure diminished the number of tables considerably, eliminated redundancies and made data retrieval more efficient. A new method for prediction of gene function was proposed, based on the assumption that similarity between exon sequences is associated with biochemical function. Using Blast with 20380 exon protein sequences and a threshold E-value of 0.01, 639 exon groups were obtained with an average of 11 exons per group. When estimating the functional similarity, it was found that on the average 72% of the exons in a group had at least one Gene Ontology (GO) term in common.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:his-26 |
Date | January 2005 |
Creators | Dodda, Srinivasa Rao |
Publisher | Högskolan i Skövde, Institutionen för kommunikation och information, Skövde : Institutionen för kommunikation och information |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds