Return to search

Modélisation numérique des distorsions post usinage pour les pièces aéronautiques en alliage d’aluminium : application aux parois minces / Computational modelling of post machining distortions of aluminium aeronautical parts : application to thin walls

La fabrication de grandes pièces structurelles aéronautiques en alliage d’aluminium nécessite la réalisation de multiples étapes de mise en forme (laminage, matriçage, forgeage…), de traitements thermiques et usinage. Pendant ces étapes de fabrication, les différents chargements thermomécaniques subis par la pièce avant son usinage induisent des déformations plastiques ainsi que des modifications de la microstructure qui sont sources de contraintes résiduelles. A ces contraintes résiduelles issues de l’histoire thermomécanique de la pièce, viennent s’ajouter celles issues directement de l'étape d'usinage. En effet lors de cette étape jusqu’à 90% de la matière initiale d'une pièce peut être retirée en utilisant des conditions de coupe parfois sévères. Les pièces aéronautiques présentent parfois des géométries complexes avec des parois minces. Ainsi, pendant et à l’issue de l’usinage, la géométrie de la pièce usinée se trouve fortement modifiée et une redistribution des contraintes résiduelle est alors à l’œuvre. Ces contraintes résiduelles qu’elles soient héritées ou induites par le procédé, influencent fortement la géométrie finale obtenue et sont une des causes principales de non-conformité des pièces avec les tolérances dimensionnelles du produit fini. Engendrant une perte conséquente pour les industries manufacturières. Au cours de ce travail de thèse, nous nous sommes concentrés sur la prise en compte de ces deux types de contraintes résiduelles dans un modèle numérique de prédiction des distorsions. Nous nous sommes uniquement focalisés sur les pièces en aluminium issues de l’aéronautique. Nous avons ainsi couplé des modèles numériques avancés d’immersion et de remaillage avec un logiciel industriel existant afin de proposer une nouvelle solution numérique, rapide et robuste. En se basant sur les hypothèses de la littérature nous avons décidé de simuler l’usinage comme un enlèvement de matière massif où la trajectoire de l’outil et les machine seront négligées. L’objectif numérique est donc de proposer une méthode qui puisse rendre compte de la redistribution des contraintes résiduelles au sein de la pièce. Chaque étape de la gamme d’usinage est ainsi représentée par une étape de remaillage où le « volume usiné » sera supprimé du maillage pour céder ensuite sa place à un calcul mécanique permettant de rendre compte de la réorganisation des contraintes et les déformations qu’elle induisent. Ce processus itératif, réalisé dans un environnement parallèle a nécessité de nombreux développements numériques. Ainsi une nouvelle stratégie de remaillage et de repartitionnement a été proposée pour pouvoir obtenir un maillage à même de capturer les contraintes résiduelles issues de l’usinage en proche surface ainsi que pour réduire de manière significative les temps de calcul liés aux modifications de la géométrie par la découpe. Un modèle d’élasticité linéaire simplifié a aussi été ajouté au programme pour réduire le coût numérique des calculs mécaniques et permettre de traiter des problèmes de taille plus conséquente sur des ordinateurs de puissance raisonnable. Afin de confirmer les résultats obtenus par ces calculs, les simulations ont été comparées à des résultats expérimentaux tirés de la littérature et réalisés spécifiquement pour ce travail de thèse. / The manufacture of large aeronautical structural parts made of aluminium alloys requires multiple forming steps (rolling, die forging, forging, etc.), heat treatment and machining. During these manufacturing steps, the various thermomechanical loads suffered by the part before its machining induce plastic deformations as well as modifications of the microstructure which are sources of residual stresses. In addition to these residual stresses resulting from the thermomechanical history of the part, others result directly from the machining step. Indeed, during this step, up to 90% of the raw material of a part can be removed using sometimes severe cutting conditions. Aeronautical parts sometimes have complex geometries with thin walls. Thus, during and after machining, the geometry of the machined part is significantly modified by the redistribution of residual stresses at work. These residual stresses, whether inherited or induced by the process, strongly influence the final geometry obtained and are one of the main causes of non-conformity of the parts with the dimensional tolerances of the finished product. This results in a significant loss for manufacturing industries. In this thesis work, we focused on considering these two types of residual stresses in a numerical model predicting distortions. We focused only on aluminium parts from the aeronautics industry. We have thus coupled advanced numerical fitting and remeshing models with existing industrial software to provide a new numerical solution, fast and efficient. Based on the assumptions in the literature, we decided to model machining as a massive material removal where tool path and interaction with the machine will be neglected. The numerical objective is therefore to propose a method that can account for the redistribution of residual stresses within the part. Each step of the machining plan is thus represented by a remeshing step where the "machined volume" will be removed from the mesh followed by a mechanical computation to account for the reorganization of stresses and the deformations they induce. This iterative process, carried out in a parallel environment, required many numerical developments. Thus, a new remeshing and repartitioning strategy has been proposed to obtain a mesh capable of capturing the residual stresses resulting from near-surface machining and to significantly reduce the calculation times associated with changes in geometry through cutting. A simplified linear elasticity model has also been added to the approach to reduce the numerical cost of mechanical computation and allow for larger problems to be addressed on computers of reasonable power. In order to confirm the results obtained by these computations, the simulations were compared with experimental results from the literature and carried out specifically for this thesis work.

Identiferoai:union.ndltd.org:theses.fr/2019PSLEM025
Date23 September 2019
CreatorsRambaud, Pierrick
ContributorsParis Sciences et Lettres, Mocellin, Katia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds