Return to search

Mathematical and computer modelling of the enteric nervous system

The enteric nervous system (ENS) runs within the intestinal wall and is responsible for initiating and enacting several reflexes and motor patterns, including peristalsis and the complex interdigestive motor programs, known as migrating motor complexes (MMCs). The ENS consists of several neuron types including intrinsic sensory neurons, interneurons and motor neurons. A great deal is known about the anatomy, pharmacology and electrophysiology of the ENS, yet there is almost no understanding of how enteric neural circuits perform the functions that they do and how they switch from one function to another. The ENS contains intrinsic sensory neurons (ISNs) that connect to every neuron type in the ENS, including making recurrent connections amongst themselves. Thus, they are likely to play a key role, not just in sensory transduction, but in coordination of reflexes and motor patterns. This thesis has explored how these functions are performed by developing and analysing mathematical and computer models of the network of ISNs. (For complete abstract open document)

Identiferoai:union.ndltd.org:ADTP/245698
Date January 2001
CreatorsThomas, Evan Alexander
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsTerms and Conditions: Copyright in works deposited in the University of Melbourne Eprints Repository (UMER) is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only, download, print, and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works., Open Access

Page generated in 0.0018 seconds