This thesis focuses on comparing an online parameter estimator to an offline estimator, both based on the PaRIS-algorithm, when estimating parameter values for a stochastic volatility model. By modeling the stochastic volatility model as a hidden Markov model, estimators based on particle filters can be implemented in order to estimate the unknown parameters of the model. The results from this thesis implies that the proposed online estimator could be considered as a superior method to the offline counterpart. The results are however somewhat inconclusive, and further research regarding the subject is recommended. / Detta examensarbetefokuserar på att jämföra en online och offline parameter-skattare i stokastiskavolatilitets modeller. De två parameter-skattarna som jämförs är båda baseradepå PaRIS-algoritmen. Genom att modellera en stokastisk volatilitets-model somen dold Markov kedja, kunde partikelbaserade parameter-skattare användas föratt uppskatta de okända parametrarna i modellen. Resultaten presenterade idetta examensarbete tyder på att online-implementationen av PaRIS-algorimen kanses som det bästa alternativet, jämfört med offline-implementationen.Resultaten är dock inte helt övertygande, och ytterligare forskning inomområdet
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-252313 |
Date | January 2019 |
Creators | Toft, Albin |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2019:072 |
Page generated in 0.0019 seconds