Computational fluid dynamics and heat transfer (CFD/HT) models have been employed as the dominant technique for the design and optimization of both new and existing data centers. Inviscid modeling has shown great speed advantages over the full Navier-Stokes CFD/HT models (over 20 times faster), but is incapable of capturing the physics in the viscous regions of the domain. A coupled inviscid-viscous solution method (CIVSM) for bounded domains has been developed in order to increase both the solution speed and accuracy of CFD/HT models. The methodology consists of an iterative solution technique that divides the full domain into multiple regions consisting of at least one set of viscous, inviscid, and interface regions. The full steady, Reynolds-Averaged Navier-Stokes (RANS) equations with turbulence modeling are used to solve the viscous domain, while the inviscid domain is solved using the Euler equations. By combining the increased speed of the inviscid solver in the inviscid regions, along with the viscous solver’s ability to capture the turbulent flow physics in the viscous regions, a faster and potentially more accurate solution can be obtained for bounded domains that contain inviscid regions which encompass more than half of the domain, such as data centers.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54316 |
Date | 07 January 2016 |
Creators | Cruz, Ethan E. |
Contributors | Joshi, Yogendra K. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0017 seconds