Este trabalho realiza uma análise dos modelos pertencentes à Computação Neural e à Computação Evolutiva visando identificar semelhanças entre as áreas e sustentar mapeamentos entre as semelhanças identificadas. Neste contexto, a identificação de similaridades visando à resolução de problemas de otimização combinatorial resulta em uma comparação entre a Máquina de Boltzmann e os Algoritmos Evolutivos binários com população composta por um único indivíduo pai e um único indivíduo descendente. Como forma de auxiliar nas análises, o trabalho utiliza o Problema do Caixeiro Viajante como plataforma de ensaios, propondo mapeamentos entre as equações da Máquina de Boltzmann e os operadores evolutivos da Estratégia Evolutiva (1+1)-ES. / An analysis between the Evolutionary Computation and the Neural Computation fields was presented in order to identify similarities and mappings between the theories. In the analysis, the identification of similarities between the models designed for combinatorial optimization problems results in a comparison between the Boltzmann Machine and the Two-Membered Evolutionary Algorithms. In order to analyze the class of combinatorial optimization problems, this work used the Traveling Salesman Problem as a study subject, where the Boltzmann Machine equations were used to implement the evolutionary operators of an Evolution Strategy (1+1)-ES.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-10092009-171140 |
Date | 08 June 2009 |
Creators | David Saraiva Farias Fernandes |
Contributors | Marco Túlio Carvalho de Andrade, Afonso de Campos Pinto, Paulo Marcelo Tasinaffo |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds