Return to search

A heterogenous three-dimensional computational model for wood drying

The objective of this PhD research program is to develop an accurate and efficient heterogeneous three-dimensional computational model for simulating the drying of wood at temperatures below the boiling point of water. The complex macroscopic drying equations comprise a coupled and highly nonlinear system of physical laws for liquid and energy conservation. Due to the heterogeneous nature of wood, the physical model parameters strongly depend upon the local pore structure, wood density variation within growth rings and variations in primary and secondary system variables. In order to provide a realistic representation of this behaviour, a set of previously determined parameters derived using sophisticated image analysis methods and homogenisation techniques is embedded within the model. From the literature it is noted that current three-dimensional computational models for wood drying do not take into consideration the heterogeneities of the medium. A significant advance made by the research conducted in this thesis is the development of a three - dimensional computational model that takes into account the heterogeneous board material properties which vary within the transverse plane with respect to the pith position that defines the radial and tangential directions. The development of an accurate and efficient computational model requires the consideration of a number of significant numerical issues, including the virtual board description, an effective mesh design based on triangular prismatic elements, the control volume finite element discretisation process for the cou- pled conservation laws, the derivation of an accurate dux expression based on gradient approximations together with flux limiting, and finally the solution of a large, coupled, nonlinear system using an inexact Newton method with a suitably preconditioned iterative linear solver for computing the Newton correction. This thesis addresses all of these issues for the case of low temperature drying of softwood. Specific case studies are presented that highlight the efficiency of the proposed numerical techniques and illustrate the complex heat and mass transport processes that evolve throughout drying.

Identiferoai:union.ndltd.org:ADTP/264955
Date January 2004
CreatorsTruscott, Simon
PublisherQueensland University of Technology
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsCopyright Simon Truscott

Page generated in 0.0014 seconds