Return to search

Numerical modelling of district heating networks

District heating is today, in Sweden, the most common method used for heating buildings in cities. More than half of all the buildings, both commercial and residential, are heated using district heating. The load on the district heating networks are affected by, among other things, the time of the day and different external conditions, such as temperature differences. One has to be able to simulate the heat and pressure losses in the network in order to deliver the amount of heat demanded by the customers. Expansions of district heating networks and disrupted pipes also demand good simulations of the networks. To cope with this, energy companies use simulation software. These software need to contain numerical methods that provide accurate and stable results and at the same time be fast and efficient. At the moment there are available software packages that works but these have some limitations. Among other things you may need to divide the whole network into smaller loops or try to guess how the distribution of pressure and flow in the network looks like. The development in recent years makes it possible to use better and more efficient algorithms for these types of problems. The purpose of this report is therefore to introduce a better and more efficient method than that used in the current situation. This work is the first step in order to replace a current method used in a simulation software provided by Vitec energy. Therefore, we will in this report, stick to computing pressure and flow in the network. The method we will introduce in this report is called the gradient method and it is based on the Newton Raphson method. Unlike with older methods like Hardy Cross which is a relaxation method, you do not have to divide the network into loops. Instead you create a matrix representation of the network that is used in the computations. The idea is also that you should not need to make good initial guesses to get the method to converge quickly. We performed a number of test simulations in order to examine how the method performs. We tested how different initial guesses and how different sizes of the networks affected the number of iterations. The results shows that the model is capable of solving large networks within a reasonable number of iterations. The results also show that the initial guesses have little impact on the number of iterations. Changing the initial guess on the pressure does not affect the number at all but it turns out that changing the initial guess on the flow can affect the number of iterations a little, but not much.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-143896
Date January 2017
CreatorsLindgren, Jonas
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0011 seconds