Return to search

Modelling Weather Dynamics for Weather Derivatives Pricing

This thesis focuses on developing an appropriate stochastic model for temperature dynamics as a means of pricing weather derivative contracts based on temperature. There are various methods for pricing weather derivatives ranging from simple one like historical burn analysis, which does not involve modeling the underlying weather variable to complex ones that require Monte Carlo simulations to achieve explicit weather derivatives contract prices, particularly the daily average temperature (DAT) dynamics models. Among various DAT models, appropriate regime switching models are considered relative better than single regime models due to its ability to capture most of the temperature dynamics features caused by urbanization, deforestation, clear skies and changes of measurement station. A new proposed model for DAT dynamics, is a two regime switching models with heteroskedastic mean-reverting process in the base regime and Brownian motion with nonzero drift in the shifted regime. Before using the model for pricing temperature derivative contracts, we compare the performance of the model with a benchmark model proposed by Elias et al. (2014), interms of the HDDs, CDDs and CAT indices. Using ve data sets from dierent measurement locations in Sweden, the results shows that, a two regime switching models with heteroskedastic mean-reverting process gives relatively better results than the model given by Elias et al. We develop mathematical expressions for pricing futures and option contracts on HDDs, CDDs and CAT indices. The local volatility nature of the model in the base regime captures very well the dynamics of the underlying process, thus leading to a better pricing processes for temperature derivatives contracts written on various index variables. We use the Monte Carlo simulation method for pricing weather derivatives call option contracts.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-139253
Date January 2017
CreatorsEvarest Sinkwembe, Emanuel
PublisherLinköpings universitet, Matematisk statistik, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1784

Page generated in 0.0036 seconds