This thesis studies how the Douglas–Rachford splitting technique can be leveraged for scalable computational optimal transport (OT). By carefully splitting the problem, we derive an algorithm with several advantages. First, the algorithm enjoys global convergence rates comparable to the state-of-the-art while benefiting from accelerated local rates. In contrast to other methods, it does not depend on hyperparameters that can cause numerical instability. This feature is particularly advantageous when low-precision floating points are used or if the data is noisy. Moreover, the updates can efficiently be carried out on GPUs and, therefore, benefit from the high degree of parallelization achieved via GPU computations. Furthermore, we show that the algorithm can be extended to handle a broad family of regularizers and constraints while enjoying the same theoretical and numerical properties. These factors combined result in a fast algorithm that can be applied to large-scale OT problems and regularized versions thereof, which we illustrate in several numerical experiments. In the first part of the main body of the thesis, we present how Douglas-Rachford splitting can be adapted for the unregularized OT problem to derive a fast algorithm. We present two global convergence guarantees for the resulting algorithm: a 1/k-ergodic rate and a linear rate. We also show that the stopping criteria of the algorithm can be computed on the fly with virtually no extra costs. Further, we specify how a GPU kernel can be efficiently implemented to carry out the operations needed for the algorithm. To show that the algorithm is fast, accurate, and robust, we run a series of numerical benchmarks that demonstrate the advantages of our algorithm. We then extend the algorithm to handle regularized OT using sparsity-promoting regularizers. The generalized algorithm will enjoy the same sublinear rate derived for the unregularized formulation. We also complement the global rate with local guarantees, establishing that, under non-degeneracy assumptions on the solution, the algorithm will identify the correct sparsity pattern of the solution in finitely many iterations. When the sparsity pattern is identified, a faster linear rate typically dominates. We also specify how to extend to the GPU implementation and the stopping criteria to handle regularized OT, and we subsequently specify how to backpropagate through the solver. We end this part of the thesis by presenting some numerical results, including performance on quadratically regularized OT and group Lasso regularized OT for domain adaptation, showing a substantial improvement compared to the state-of-the-art. In the last part of the thesis, we provide a more detailed analysis of the local behavior of the algorithm when applied to unregularized OT and quadratically regularized OT. We subsequently outline how to extend this analysis to several other sparsity-promoting regularizers. In the former two cases, we show that the update that constitutes the algorithm converges to a linear operator in finitely many iterations. By analyzing the spectral properties of these linear operators, we gain insights into the local behavior of the algorithm, and specifically, these results suggest how to tune stepsizes to obtain better local rates. / Denna avhandling behandlar hur Douglas–Rachford-splittning kan tillämpas för skalbara beräkningar av optimal transport (OT). Genom en noggrann splittning av problemet härleder vi en algoritm med flera fördelar. För det första åtnjuter algoritmen en global konvergenshastighet som är jämförbara med populära OT-lösare, samtidigt som den drar nytta av accelererade lokalahastigheter. Till skillnad från andra metoder är den inte beroende av hyperparametrar som kan orsaka numerisk instabilitet. Den här egenskapen är särskilt fördelaktig när lågprecisionsaritmetik används eller när data innehåller mycket brus. Uppdateringarna som algoritmen baseras på kan effektivt utföras på GPU:er och dra nytta av dess parallellberäkningar. Vi visar också att algoritmen kan utökas för att hantera en rad regulariseriseringar och bivillkor samtidigt som den åtnjuter liknande teoretiska och numeriska egenskaper. Tillsammans resulterar dessa faktorer i en snabb algoritm som kan tillämpas på storskaliga OT-problem samt flera av dess regulariserade varianter, vilket vi visar i flera numeriska experiment. I den första delen av avhandlingen presenterar vi hur Douglas-Rachford-splittning kan anpassas för det oregulariserade OT-problemet för att härleda en snabb algoritm. För den resulterande algoritmen presenterar vi två globala konvergensgarantier: en 1/k-ergodisk och en linjär konvergenshastighet. Vi presenterar också hur stoppkriterierna för algoritmen kan beräknas utan vidare extra kostnader. Dessutom specificerar vi hur en GPU-kärna kan implementeras för att effektivt utföra de operationer som algoritmen baseras på. För att visa att algoritmen är snabb, exakt och robust utför vi ett flertal numeriska experiment som påvisar flera fördelar över jämförbara algoritmer. Därefter utökar vi algoritmen för att hantera regulariserad OT med s.k. sparsity-promoting regularizers. Den generaliserade algoritmen åtnjuter samma sublinjära konvergenshastighet som härleddes för den oregulariserade fallet. Vi kompletterar också garantierna genom att tillhandahålla lokala garantier genom att fastställa att givet svaga antaganden om lösningen kommer algoritmen att identifiera den korrekta lösningens gleshetsstuktur inom ett begränsat antal iterationer. När glesheten identifierats dominerar typiskt sett en snabbare linjär konvergenshastighet. Vi specificerar också hur man utökar till GPU-kärnan och resultaten av stoppkriterierna för att hantera regulariserad OT, och vi specificerar sedan hur man differentiera genom lösaren. Vi avslutar den här delen av avhandlingen genom att presentera några numeriska resultat för kvadratiskt reglerad OT och group Lasso-reglerad OT för domänanpassning, vilket visar en betydande förbättring jämfört med de mest populära metoderna för dessa tillämpningar. I den sista delen av avhandlingen ger vi en mer detaljerad analys av algoritmens lokala beteende när den tillämpas på oregulerisad OT och kvadratiskt reglerad OT. Vi föreslår även sätt att studera flera andra fallet. I de två första fallen visar vi att uppdateringen som utgör algoritmen konvergerar till en linjär operator inom ett begränsat antal iterationer. Genom att analysera de spektrala egenskaperna hos dessa linjära operatorer får vi ytterligare insikter i algoritmens lokala beteende, och specifikt indikerar dessa resultat hur man kan justera steglängden för att uppnå ännu bättre konvergenshastigheter. / <p>QC 20231123</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-339965 |
Date | January 2023 |
Creators | Lindbäck, Jacob |
Publisher | KTH, Reglerteknik, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-AVL ; 2023:85 |
Page generated in 0.013 seconds