Return to search

Improving data center efficiency through smart grid integration and intelligent analytics

The ever-increasing growth of the demand in IT computing, storage and large-scale cloud services leads to the proliferation of data centers that consist of (tens of) thousands of servers. As a result, data centers are now among the largest electricity consumers worldwide. Data center energy and resource efficiency has started to receive significant attention due to its economical, environmental, and performance impacts. In tandem, facing increasing challenges in stabilizing the power grids due to growing needs of intermittent renewable energy integration, power market operators have started to offer a number of demand response (DR) opportunities for energy consumers (such as data centers) to receive credits by modulating their power consumption dynamically following specific requirements.

This dissertation claims that data centers have strong capabilities to emerge as major enablers of substantial electricity integration from renewables. The participation of data centers into emerging DR, such as regulation service reserves (RSRs), enables the growth of the data center in a sustainable, environmentally neutral, or even beneficial way, while also significantly reducing data center electricity costs. In this dissertation, we first model data center participation in DR, and then propose runtime policies to dynamically modulate data center power in response to independent system operator (ISO) requests, leveraging advanced server power and workload management techniques. We also propose energy and reserve bidding strategies to minimize the data center energy cost. Our results demonstrate that a typical data center can achieve up to 44% monetary savings in its electricity cost with RSR provision, dramatically surpassing savings achieved by traditional energy management strategies. In addition, we investigate the capabilities and benefits of various types of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in practice on a real server.

In addition to its contributions on improving data center energy efficiency, this dissertation also proposes a novel method to address data center management efficiency. We propose an intelligent system analytics approach, "discovery by example", which leverages fingerprinting and machine learning methods to automatically discover software and system changes. Our approach eases runtime data center introspection and reduces the cost of system management. / 2018-11-04T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/19505
Date05 November 2016
CreatorsChen, Hao
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0022 seconds