Context-based Reasoning (CxBR) and Contextual Graphs (CxGs) involve the modeling of human behavior in autonomous and decision-support situations in which optimal human decision-making is of utmost importance. Both formalisms use the notion of contexts to allow the implementation of intelligent agents equipped with a context sensitive knowledge base. However, CxBR uses a set of discrete contexts, implying that models created using CxBR operate within one context at a given time interval. CxGs use a continuous context-based representation for a given problem-solving scenario for decision-support processes. Both formalisms use contexts dynamically by continuously changing between necessary contexts as needed in appropriate instances. This thesis identifies a synergy between these two formalisms by looking into their similarities and differences. It became clear during the research that each paradigm was designed with a very specific family of problems in mind. Thus, CXBR best implements models of autonomous agents in environment, while CxGs is best implemented in a decision support setting that requires the development of decision-making procedures. Cross applications were implemented on each and the results are discussed.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1464 |
Date | 01 January 2005 |
Creators | Lorins, Peterson Marthen |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0106 seconds