Return to search

Automatic 3D model creation with velocity-based surface deformations

The virtual worlds of Computer Graphics are populated by geometric objects, called models.
Researchers have addressed the problem of synthesizing models automatically. Traditional modeling approaches often require a user to guide the synthesis process and to look after the geometry being synthesized, but user attention is expensive, and reducing user interaction is therefore desirable. I present a scheme for the automatic creation of geometry by deforming surfaces. My scheme includes a novel surface representation; it is an explicit representation consisting of points and edges, but it is not a traditional polygonal mesh. The novel surface representation is paired with a resampling policy to control the surface density and its evolution during deformation. The surface deforms with velocities assigned to its points through a set of deformation operators. Deformation operators avoid the manual computation and assignment of velocities, the operators allow a user to
interactively assign velocities with minimal effort. Additionally, Petri nets are used to automatically deform a surface by mimicking a user assigning deformation operators. Furthermore, I present an algorithm to translate from the novel surface representations to a polygonal mesh. I demonstrate the utility of my model generation scheme with a gallery of models created automatically. The scheme's surface representation and resampling policy enables a surface to
deform without requiring a user to control the deformation; self-intersections and hole creation
are automatically prevented. The generated models show that my scheme is well suited to create
organic-like models, whose surfaces have smooth transitions between surface features, but can also
produce other kinds of models. My scheme allows a user to automatically generate varied instances
of richly detailed models with minimal user interaction.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08012007-130157
Date01 August 2007
CreatorsRangel Kuoppa, Risto Fermin
ContributorsWyvill, Brian, Spiteri, Raymond J., Soteros, Chris, Osgood, Nathaniel, Neufeld, Eric, Mould, David
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08012007-130157/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds