Return to search

Comparison of Strategies for the Constraint Determination of Simulink Models

The Simulink environment allows rapid prototyping of complex software systems. Because many of these systems are mission-critical, it is of utmost importance to determine their input and output constraints. Determining input constraints is a trivial matter, but the constraint determination of a system's output values is a serious and challenging problem that historically has entailed an exhaustive exploration of the system's input states. The work presented in this thesis recounts and extends a research project supported by NASA whose focus was to develop a strategy to constrain the outputs of a Simulink model. Simulink models are quite similar to mathematical functions and therefore optimization algorithms can be applied to constrain the outputs. Optimizations of simple mathematical functions paved the way for random functions and finally led to the development of two optimization algorithms. During the exploration of potential optimization algorithms, strategies such as Monte Carlo, the simplex method, simulated annealing, and evolution strategy were explored. In the end, a combined approach utilizing both simulated annealing and the simplex method was compared with evolution strategy for relative strengths and weaknesses. It was determined that the evolution strategy algorithm was more suited to optimization of Simulink models due to its more effective usage of model calls and to its higher success rate.

Identiferoai:union.ndltd.org:MONTANA/oai:etd.lib.umt.edu:etd-05112007-121748
Date23 July 2007
CreatorsAlex, Charles Joseph
ContributorsDr. Joel Henry, Dr. George McRae, Dr. Alden Wright
PublisherThe University of Montana
Source SetsUniversity of Montana Missoula
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.umt.edu/theses/available/etd-05112007-121748/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Montana or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds