Return to search

Hamilton Cycle Heuristics in Hard Graphs

In this thesis, we use computer methods to investigate Hamilton cycles and paths in several families of graphs where general results are incomplete, including Kneser graphs, cubic Cayley graphs and the middle two levels graph. We describe a novel heuristic which has proven useful in finding Hamilton cycles in these families and compare its performance to that of other algorithms and heuristics. We describe methods for handling very large graphs on personal computers. We also explore issues in reducing the possible number of generating sets for cubic Cayley graphs generated by three involutions.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-03142004-013420
Date23 March 2004
CreatorsShields, Ian Beaumont
ContributorsJon Doyle, Matthias F. Stallmann, Robert E. Hartwig, Carla D. Savage
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-03142004-013420/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds