Cette thèse concerne la planification des tâches de manipulation effectuées par une main robotisée. Il s'agit de mettre au point un système de calcul automatique des trajectoires que doivent suivre les doigts et l'objet manipulé, pour passer d'une configuration initiale à une configuration finale données. La méthode proposée dans cette thèse s'appuie sur une formulation originale du problème de planification, basée sur l'étude de la connexité des espaces des configurations de prise. Ces espaces sont explorés par l'intermédiaire de graphes probabilistes. En particulier, un graphe est construit pour explorer GSn, l'espace des configurations de prise à n doigts, n étant le nombre de doigts de la main. Les arêtes de ce graphe sont des chemins linéaires dans GSn. Utiliser de tels chemins permet d'éviter le calcul des mouvements de reconfiguration de prise et donc de réduire les temps de calcul et l'espace mémoire requis par la construction du graphe. Ces chemins ne sont pas cinématiquement réalisables puisque la pose de l'objet et la position des contacts ne peuvent changer indépendamment mais leur utilisation est rendue possible par la généralisation de la propriété de réduction introduite par Alami et al. Les mouvements de changement de prise qui requièrent d'être explicitement calculés au cours de la construction du graphe, sont pris en compte lors d'une étape de fusion des composantes connexes du graphe. Ces fusions sont réalisées à l'aide de chemins élémentaires respectant la cinématique de la manipulation coordonnée. Ces chemins sont appelés "chemins de ressaisie" et "chemins de transfert". Une fois que les configurations initiale et finale appartiennent à une même composante connexe du graphe, les chemins dans GSn sont décomposés en une suite de mouvements de déplacement de l'objet et de reconfiguration de la prise (chemins de transfert et de ressaisie), cinématiquement réalisables. Pour assurer la stabilité des chemins construits, un critère de stabilité de la prise (fermeture de force) est vérifié le long des chemins, lors de leur construction. Pour valider cette approche, une plate-forme de simulation a été développée et a permis de planifier différentes tâches de manipulation dextre avec une main à quatre doigts. Le planificateur offre des performances très intéressantes en terme de temps de calcul et a permis de résoudre des problèmes complexes tels qu'aucun résultat pour des problèmes de difficulté équivalente n'avait jamais été présenté jusqu'à présent. La méthode proposée s'applique à n'importe quel type de main, quel que soit son nombre de doigts mais, comme elle explore uniquement GSn et GS{n-1}, elle peut manquer des solutions si la main robotisée et le modèle des contacts doigt-objet permet la prise avec un nombre différent de doigts. Pour remédier à cela, nous avons proposé une méthode légèrement différente qui s'applique à une main à cinq doigts et consiste à construire un graphe pour explorer chacune des cinq composantes connexes de GS4 à l'aide de chemins linéaires dans cet espace et à tenter de fusionner les différents graphes à l'aide de chemins linéaires dans GS5 ou de chemins de transfert-ressaisie (dans GS3). Enfin, une variante de la méthode proposée a été développée pour prendre en compte le roulement relatif des surfaces de contact au cours de la manipulation de l'objet. Les différentes modifications nécessaires, concernant la représentation des prises et le calcul de chemins de transfert, sont présentées en détail.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00715477 |
Date | 20 November 2007 |
Creators | Saut, Jean-Philippe |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds