Return to search

Mining multi-level association rules using data cubes and mining N-most interesting itemsets.

by Kwong, Wang-Wai Renfrew. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 102-105). / Abstracts in English and Chinese. / Abstract --- p.ii / Acknowledgments --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Data Mining Tasks --- p.1 / Chapter 1.1.1 --- Characterization --- p.2 / Chapter 1.1.2 --- Discrimination --- p.2 / Chapter 1.1.3 --- Classification --- p.2 / Chapter 1.1.4 --- Clustering --- p.3 / Chapter 1.1.5 --- Prediction --- p.3 / Chapter 1.1.6 --- Description --- p.3 / Chapter 1.1.7 --- Association Rule Mining --- p.4 / Chapter 1.2 --- Motivation --- p.4 / Chapter 1.2.1 --- Motivation for Mining Multi-level Association Rules Using Data Cubes --- p.4 / Chapter 1.2.2 --- Motivation for Mining N-most Interesting Itemsets --- p.8 / Chapter 1.3 --- Outline of the Thesis --- p.10 / Chapter 2 --- Survey on Previous Work --- p.11 / Chapter 2.1 --- Data Warehousing --- p.11 / Chapter 2.1.1 --- Data Cube --- p.12 / Chapter 2.2 --- Data Mining --- p.13 / Chapter 2.2.1 --- Association Rules --- p.14 / Chapter 2.2.2 --- Multi-level Association Rules --- p.15 / Chapter 2.2.3 --- Multi-Dimensional Association Rules Using Data Cubes --- p.16 / Chapter 2.2.4 --- Apriori Algorithm --- p.19 / Chapter 3 --- Mining Multi-level Association Rules Using Data Cubes --- p.22 / Chapter 3.1 --- Use of Multi-level Concept --- p.22 / Chapter 3.1.1 --- Multi-level Concept --- p.22 / Chapter 3.1.2 --- Criteria of Using Multi-level Concept --- p.23 / Chapter 3.1.3 --- Use of Multi-level Concept in Association Rules --- p.24 / Chapter 3.2 --- Use of Data Cube --- p.25 / Chapter 3.2.1 --- Data Cube --- p.25 / Chapter 3.2.2 --- Mining Multi-level Association Rules Using Data Cubes --- p.26 / Chapter 3.2.3 --- Definition --- p.28 / Chapter 3.3 --- Method for Mining Multi-level Association Rules Using Data Cubes --- p.31 / Chapter 3.3.1 --- Algorithm --- p.33 / Chapter 3.3.2 --- Example --- p.35 / Chapter 3.4 --- Experiment --- p.44 / Chapter 3.4.1 --- Simulation of Data Cube by Array --- p.44 / Chapter 3.4.2 --- Simulation of Data Cube by B+ Tree --- p.48 / Chapter 3.5 --- Discussion --- p.54 / Chapter 4 --- Mining the N-most Interesting Itemsets --- p.56 / Chapter 4.1 --- Mining the N-most Interesting Itemsets --- p.56 / Chapter 4.1.1 --- Criteria of Mining the N-most Interesting itemsets --- p.56 / Chapter 4.1.2 --- Definition --- p.58 / Chapter 4.1.3 --- Property --- p.59 / Chapter 4.2 --- Method for Mining N-most Interesting Itemsets --- p.60 / Chapter 4.2.1 --- Algorithm --- p.60 / Chapter 4.2.2 --- Example --- p.76 / Chapter 4.3 --- Experiment --- p.81 / Chapter 4.3.1 --- Synthetic Data --- p.81 / Chapter 4.3.2 --- Real Data --- p.85 / Chapter 4.4 --- Discussion --- p.98 / Chapter 5 --- Conclusion --- p.100 / Bibliography --- p.101 / Appendix --- p.106 / Chapter A --- Programs for Mining the N-most Interesting Itemset --- p.106 / Chapter A.1 --- Programs --- p.106 / Chapter A.2 --- Data Structures --- p.108 / Chapter A.3 --- Global Variables --- p.109 / Chapter A.4 --- Functions --- p.110 / Chapter A.5 --- Result Format --- p.113 / Chapter B --- Programs for Mining the Multi-level Association Rules Using Data Cube --- p.114 / Chapter B.1 --- Programs --- p.114 / Chapter B.2 --- Data Structure --- p.118 / Chapter B.3 --- Variables --- p.118 / Chapter B.4 --- Functions --- p.119

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323175
Date January 2000
ContributorsKwong, Wang-Wai Renfrew., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xiv, 123 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0024 seconds