Return to search

Network Formation and Routing for Multi-hop Wireless Ad-Hoc Networks

An energy-aware on-demand Bluetooth scatternet formation and routing protocol taking into
account network architecture and traffic pattern is proposed. The scatternet formation protocol is able to cope with multiple sources initiating
traffic simultaneously as well as prolong network lifetime. A modified Inquiry scheme using extended ID packet is introduced for fast device discovery and power efficient propagation of route request messages with low delay. A mechanism employing POLL packets in Page processes is proposed to transfer scatternet formation and route reply information without extra overhead. In addition, the energy aware forwarding nodes selection scheme is based on local information and results in more uniform network resource utilization and improved network lifetime. Simulation results show that this protocol can provide scatternet formation
with reasonable delay and with good load balance which results in prolonged network lifetime for Bluetooth-based wireless sensor networks.
In this research, a metric-based scatternet formation algorithm for the Bluetooth-based sensor motes is presented. It optimizes the Bluetooth network formation from the hop distance
and link quality perspectives. In addition, a smart repair mechanism is proposed to deal with link/node failure and recover the network connectivity promptly with low overhead. The experiments with the Intel Mote platform demonstrate the effectiveness of the optimizations.
This research also investigates the scalability of ad hoc routing protocols in very large-scale wireless ad hoc networks. A comprehensive
simulation study is conducted of the performance of an on-demand routing protocol on a very large-scale, with as many as 50,000 nodes in the network. The scalability analysis is addressed based on various network sizes, node density, traffic load, and mobility. The reasons for packet loss are analyzed and categorized at each network layer. Based on the observations, we observe the effect of the parameter selection and try to exhaust the scalability boundary
of the on-demand routing protocol for wireless ad hoc networks.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11470
Date17 May 2006
CreatorsZhang, Xin
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format5396884 bytes, application/pdf

Page generated in 0.0028 seconds