Return to search

Adaptive power control in 802.11 networks

IEEE 802.11 networks successfully satisfy high data demands and are cheaper compared to cellular networks. Modern mobile computers and phones are equipped with 802.11 and are VoIP capable. Current network designs do not dynamically accommodate changes in the usage. We propose a dynamic power control algorithm that provides greater capacity within a limited geographic region. Most other power algorithms necessitate changes in 802.11 requiring hardware changes. Proposed algorithm only requires firmware updates to enable dynamic control of APs transmit power. We use earlier studies to determine the limit of the number of users to optimize power. By lowering transmit power of APs with large number of users, we can effectively decrease the cell size. The resulting gap is then covered by dynamically activating additional APs. This also provides greater flexibility and reduces the network planning costs. / by Serkan Dural. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3446
ContributorsDural, Serkan., College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeText, Electronic Thesis or Dissertation
Formatx, 71 p. : ill. (some col.), electronic
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds